Whakaoti mō a
a=\frac{\sqrt{217}-17}{18}\approx -0.126060008
a=\frac{-\sqrt{217}-17}{18}\approx -1.762828881
Tohaina
Kua tāruatia ki te papatopenga
-18a^{2}-34a-4=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a=\frac{-\left(-34\right)±\sqrt{\left(-34\right)^{2}-4\left(-18\right)\left(-4\right)}}{2\left(-18\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -18 mō a, -34 mō b, me -4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-34\right)±\sqrt{1156-4\left(-18\right)\left(-4\right)}}{2\left(-18\right)}
Pūrua -34.
a=\frac{-\left(-34\right)±\sqrt{1156+72\left(-4\right)}}{2\left(-18\right)}
Whakareatia -4 ki te -18.
a=\frac{-\left(-34\right)±\sqrt{1156-288}}{2\left(-18\right)}
Whakareatia 72 ki te -4.
a=\frac{-\left(-34\right)±\sqrt{868}}{2\left(-18\right)}
Tāpiri 1156 ki te -288.
a=\frac{-\left(-34\right)±2\sqrt{217}}{2\left(-18\right)}
Tuhia te pūtakerua o te 868.
a=\frac{34±2\sqrt{217}}{2\left(-18\right)}
Ko te tauaro o -34 ko 34.
a=\frac{34±2\sqrt{217}}{-36}
Whakareatia 2 ki te -18.
a=\frac{2\sqrt{217}+34}{-36}
Nā, me whakaoti te whārite a=\frac{34±2\sqrt{217}}{-36} ina he tāpiri te ±. Tāpiri 34 ki te 2\sqrt{217}.
a=\frac{-\sqrt{217}-17}{18}
Whakawehe 34+2\sqrt{217} ki te -36.
a=\frac{34-2\sqrt{217}}{-36}
Nā, me whakaoti te whārite a=\frac{34±2\sqrt{217}}{-36} ina he tango te ±. Tango 2\sqrt{217} mai i 34.
a=\frac{\sqrt{217}-17}{18}
Whakawehe 34-2\sqrt{217} ki te -36.
a=\frac{-\sqrt{217}-17}{18} a=\frac{\sqrt{217}-17}{18}
Kua oti te whārite te whakatau.
-18a^{2}-34a-4=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-18a^{2}-34a-4-\left(-4\right)=-\left(-4\right)
Me tāpiri 4 ki ngā taha e rua o te whārite.
-18a^{2}-34a=-\left(-4\right)
Mā te tango i te -4 i a ia ake anō ka toe ko te 0.
-18a^{2}-34a=4
Tango -4 mai i 0.
\frac{-18a^{2}-34a}{-18}=\frac{4}{-18}
Whakawehea ngā taha e rua ki te -18.
a^{2}+\left(-\frac{34}{-18}\right)a=\frac{4}{-18}
Mā te whakawehe ki te -18 ka wetekia te whakareanga ki te -18.
a^{2}+\frac{17}{9}a=\frac{4}{-18}
Whakahekea te hautanga \frac{-34}{-18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
a^{2}+\frac{17}{9}a=-\frac{2}{9}
Whakahekea te hautanga \frac{4}{-18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
a^{2}+\frac{17}{9}a+\left(\frac{17}{18}\right)^{2}=-\frac{2}{9}+\left(\frac{17}{18}\right)^{2}
Whakawehea te \frac{17}{9}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{17}{18}. Nā, tāpiria te pūrua o te \frac{17}{18} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
a^{2}+\frac{17}{9}a+\frac{289}{324}=-\frac{2}{9}+\frac{289}{324}
Pūruatia \frac{17}{18} mā te pūrua i te taurunga me te tauraro o te hautanga.
a^{2}+\frac{17}{9}a+\frac{289}{324}=\frac{217}{324}
Tāpiri -\frac{2}{9} ki te \frac{289}{324} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(a+\frac{17}{18}\right)^{2}=\frac{217}{324}
Tauwehea a^{2}+\frac{17}{9}a+\frac{289}{324}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{17}{18}\right)^{2}}=\sqrt{\frac{217}{324}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
a+\frac{17}{18}=\frac{\sqrt{217}}{18} a+\frac{17}{18}=-\frac{\sqrt{217}}{18}
Whakarūnātia.
a=\frac{\sqrt{217}-17}{18} a=\frac{-\sqrt{217}-17}{18}
Me tango \frac{17}{18} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}