Tauwehe
-16\left(x-\left(-\frac{5\sqrt{16813}}{4}+162\right)\right)\left(x-\left(\frac{5\sqrt{16813}}{4}+162\right)\right)
Aromātai
421+5184x-16x^{2}
Graph
Tohaina
Kua tāruatia ki te papatopenga
-16x^{2}+5184x+421=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-5184±\sqrt{5184^{2}-4\left(-16\right)\times 421}}{2\left(-16\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-5184±\sqrt{26873856-4\left(-16\right)\times 421}}{2\left(-16\right)}
Pūrua 5184.
x=\frac{-5184±\sqrt{26873856+64\times 421}}{2\left(-16\right)}
Whakareatia -4 ki te -16.
x=\frac{-5184±\sqrt{26873856+26944}}{2\left(-16\right)}
Whakareatia 64 ki te 421.
x=\frac{-5184±\sqrt{26900800}}{2\left(-16\right)}
Tāpiri 26873856 ki te 26944.
x=\frac{-5184±40\sqrt{16813}}{2\left(-16\right)}
Tuhia te pūtakerua o te 26900800.
x=\frac{-5184±40\sqrt{16813}}{-32}
Whakareatia 2 ki te -16.
x=\frac{40\sqrt{16813}-5184}{-32}
Nā, me whakaoti te whārite x=\frac{-5184±40\sqrt{16813}}{-32} ina he tāpiri te ±. Tāpiri -5184 ki te 40\sqrt{16813}.
x=-\frac{5\sqrt{16813}}{4}+162
Whakawehe -5184+40\sqrt{16813} ki te -32.
x=\frac{-40\sqrt{16813}-5184}{-32}
Nā, me whakaoti te whārite x=\frac{-5184±40\sqrt{16813}}{-32} ina he tango te ±. Tango 40\sqrt{16813} mai i -5184.
x=\frac{5\sqrt{16813}}{4}+162
Whakawehe -5184-40\sqrt{16813} ki te -32.
-16x^{2}+5184x+421=-16\left(x-\left(-\frac{5\sqrt{16813}}{4}+162\right)\right)\left(x-\left(\frac{5\sqrt{16813}}{4}+162\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 162-\frac{5\sqrt{16813}}{4} mō te x_{1} me te 162+\frac{5\sqrt{16813}}{4} mō te x_{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}