Tauwehe
4\left(3-2t\right)\left(2t-9\right)
Aromātai
-16t^{2}+96t-108
Tohaina
Kua tāruatia ki te papatopenga
4\left(-4t^{2}+24t-27\right)
Tauwehea te 4.
a+b=24 ab=-4\left(-27\right)=108
Whakaarohia te -4t^{2}+24t-27. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei -4t^{2}+at+bt-27. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,108 2,54 3,36 4,27 6,18 9,12
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 108.
1+108=109 2+54=56 3+36=39 4+27=31 6+18=24 9+12=21
Tātaihia te tapeke mō ia takirua.
a=18 b=6
Ko te otinga te takirua ka hoatu i te tapeke 24.
\left(-4t^{2}+18t\right)+\left(6t-27\right)
Tuhia anō te -4t^{2}+24t-27 hei \left(-4t^{2}+18t\right)+\left(6t-27\right).
-2t\left(2t-9\right)+3\left(2t-9\right)
Tauwehea te -2t i te tuatahi me te 3 i te rōpū tuarua.
\left(2t-9\right)\left(-2t+3\right)
Whakatauwehea atu te kīanga pātahi 2t-9 mā te whakamahi i te āhuatanga tātai tohatoha.
4\left(2t-9\right)\left(-2t+3\right)
Me tuhi anō te kīanga whakatauwehe katoa.
-16t^{2}+96t-108=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
t=\frac{-96±\sqrt{96^{2}-4\left(-16\right)\left(-108\right)}}{2\left(-16\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-96±\sqrt{9216-4\left(-16\right)\left(-108\right)}}{2\left(-16\right)}
Pūrua 96.
t=\frac{-96±\sqrt{9216+64\left(-108\right)}}{2\left(-16\right)}
Whakareatia -4 ki te -16.
t=\frac{-96±\sqrt{9216-6912}}{2\left(-16\right)}
Whakareatia 64 ki te -108.
t=\frac{-96±\sqrt{2304}}{2\left(-16\right)}
Tāpiri 9216 ki te -6912.
t=\frac{-96±48}{2\left(-16\right)}
Tuhia te pūtakerua o te 2304.
t=\frac{-96±48}{-32}
Whakareatia 2 ki te -16.
t=-\frac{48}{-32}
Nā, me whakaoti te whārite t=\frac{-96±48}{-32} ina he tāpiri te ±. Tāpiri -96 ki te 48.
t=\frac{3}{2}
Whakahekea te hautanga \frac{-48}{-32} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 16.
t=-\frac{144}{-32}
Nā, me whakaoti te whārite t=\frac{-96±48}{-32} ina he tango te ±. Tango 48 mai i -96.
t=\frac{9}{2}
Whakahekea te hautanga \frac{-144}{-32} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 16.
-16t^{2}+96t-108=-16\left(t-\frac{3}{2}\right)\left(t-\frac{9}{2}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{3}{2} mō te x_{1} me te \frac{9}{2} mō te x_{2}.
-16t^{2}+96t-108=-16\times \frac{-2t+3}{-2}\left(t-\frac{9}{2}\right)
Tango \frac{3}{2} mai i t mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
-16t^{2}+96t-108=-16\times \frac{-2t+3}{-2}\times \frac{-2t+9}{-2}
Tango \frac{9}{2} mai i t mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
-16t^{2}+96t-108=-16\times \frac{\left(-2t+3\right)\left(-2t+9\right)}{-2\left(-2\right)}
Whakareatia \frac{-2t+3}{-2} ki te \frac{-2t+9}{-2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
-16t^{2}+96t-108=-16\times \frac{\left(-2t+3\right)\left(-2t+9\right)}{4}
Whakareatia -2 ki te -2.
-16t^{2}+96t-108=-4\left(-2t+3\right)\left(-2t+9\right)
Whakakorea atu te tauwehe pūnoa nui rawa 4 i roto i te -16 me te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}