Whakaoti mō t
t = \frac{\sqrt{12385} + 79}{32} \approx 5.94649734
t=\frac{79-\sqrt{12385}}{32}\approx -1.00899734
Tohaina
Kua tāruatia ki te papatopenga
-16t^{2}+80t+96-t=0
Tangohia te t mai i ngā taha e rua.
-16t^{2}+79t+96=0
Pahekotia te 80t me -t, ka 79t.
t=\frac{-79±\sqrt{79^{2}-4\left(-16\right)\times 96}}{2\left(-16\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -16 mō a, 79 mō b, me 96 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-79±\sqrt{6241-4\left(-16\right)\times 96}}{2\left(-16\right)}
Pūrua 79.
t=\frac{-79±\sqrt{6241+64\times 96}}{2\left(-16\right)}
Whakareatia -4 ki te -16.
t=\frac{-79±\sqrt{6241+6144}}{2\left(-16\right)}
Whakareatia 64 ki te 96.
t=\frac{-79±\sqrt{12385}}{2\left(-16\right)}
Tāpiri 6241 ki te 6144.
t=\frac{-79±\sqrt{12385}}{-32}
Whakareatia 2 ki te -16.
t=\frac{\sqrt{12385}-79}{-32}
Nā, me whakaoti te whārite t=\frac{-79±\sqrt{12385}}{-32} ina he tāpiri te ±. Tāpiri -79 ki te \sqrt{12385}.
t=\frac{79-\sqrt{12385}}{32}
Whakawehe -79+\sqrt{12385} ki te -32.
t=\frac{-\sqrt{12385}-79}{-32}
Nā, me whakaoti te whārite t=\frac{-79±\sqrt{12385}}{-32} ina he tango te ±. Tango \sqrt{12385} mai i -79.
t=\frac{\sqrt{12385}+79}{32}
Whakawehe -79-\sqrt{12385} ki te -32.
t=\frac{79-\sqrt{12385}}{32} t=\frac{\sqrt{12385}+79}{32}
Kua oti te whārite te whakatau.
-16t^{2}+80t+96-t=0
Tangohia te t mai i ngā taha e rua.
-16t^{2}+79t+96=0
Pahekotia te 80t me -t, ka 79t.
-16t^{2}+79t=-96
Tangohia te 96 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{-16t^{2}+79t}{-16}=-\frac{96}{-16}
Whakawehea ngā taha e rua ki te -16.
t^{2}+\frac{79}{-16}t=-\frac{96}{-16}
Mā te whakawehe ki te -16 ka wetekia te whakareanga ki te -16.
t^{2}-\frac{79}{16}t=-\frac{96}{-16}
Whakawehe 79 ki te -16.
t^{2}-\frac{79}{16}t=6
Whakawehe -96 ki te -16.
t^{2}-\frac{79}{16}t+\left(-\frac{79}{32}\right)^{2}=6+\left(-\frac{79}{32}\right)^{2}
Whakawehea te -\frac{79}{16}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{79}{32}. Nā, tāpiria te pūrua o te -\frac{79}{32} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}-\frac{79}{16}t+\frac{6241}{1024}=6+\frac{6241}{1024}
Pūruatia -\frac{79}{32} mā te pūrua i te taurunga me te tauraro o te hautanga.
t^{2}-\frac{79}{16}t+\frac{6241}{1024}=\frac{12385}{1024}
Tāpiri 6 ki te \frac{6241}{1024}.
\left(t-\frac{79}{32}\right)^{2}=\frac{12385}{1024}
Tauwehea t^{2}-\frac{79}{16}t+\frac{6241}{1024}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{79}{32}\right)^{2}}=\sqrt{\frac{12385}{1024}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t-\frac{79}{32}=\frac{\sqrt{12385}}{32} t-\frac{79}{32}=-\frac{\sqrt{12385}}{32}
Whakarūnātia.
t=\frac{\sqrt{12385}+79}{32} t=\frac{79-\sqrt{12385}}{32}
Me tāpiri \frac{79}{32} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}