Whakaoti mō t
t=1
t=3
Tohaina
Kua tāruatia ki te papatopenga
-16t^{2}+64t+80-128=0
Tangohia te 128 mai i ngā taha e rua.
-16t^{2}+64t-48=0
Tangohia te 128 i te 80, ka -48.
-t^{2}+4t-3=0
Whakawehea ngā taha e rua ki te 16.
a+b=4 ab=-\left(-3\right)=3
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -t^{2}+at+bt-3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=3 b=1
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(-t^{2}+3t\right)+\left(t-3\right)
Tuhia anō te -t^{2}+4t-3 hei \left(-t^{2}+3t\right)+\left(t-3\right).
-t\left(t-3\right)+t-3
Whakatauwehea atu -t i te -t^{2}+3t.
\left(t-3\right)\left(-t+1\right)
Whakatauwehea atu te kīanga pātahi t-3 mā te whakamahi i te āhuatanga tātai tohatoha.
t=3 t=1
Hei kimi otinga whārite, me whakaoti te t-3=0 me te -t+1=0.
-16t^{2}+64t+80=128
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
-16t^{2}+64t+80-128=128-128
Me tango 128 mai i ngā taha e rua o te whārite.
-16t^{2}+64t+80-128=0
Mā te tango i te 128 i a ia ake anō ka toe ko te 0.
-16t^{2}+64t-48=0
Tango 128 mai i 80.
t=\frac{-64±\sqrt{64^{2}-4\left(-16\right)\left(-48\right)}}{2\left(-16\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -16 mō a, 64 mō b, me -48 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-64±\sqrt{4096-4\left(-16\right)\left(-48\right)}}{2\left(-16\right)}
Pūrua 64.
t=\frac{-64±\sqrt{4096+64\left(-48\right)}}{2\left(-16\right)}
Whakareatia -4 ki te -16.
t=\frac{-64±\sqrt{4096-3072}}{2\left(-16\right)}
Whakareatia 64 ki te -48.
t=\frac{-64±\sqrt{1024}}{2\left(-16\right)}
Tāpiri 4096 ki te -3072.
t=\frac{-64±32}{2\left(-16\right)}
Tuhia te pūtakerua o te 1024.
t=\frac{-64±32}{-32}
Whakareatia 2 ki te -16.
t=-\frac{32}{-32}
Nā, me whakaoti te whārite t=\frac{-64±32}{-32} ina he tāpiri te ±. Tāpiri -64 ki te 32.
t=1
Whakawehe -32 ki te -32.
t=-\frac{96}{-32}
Nā, me whakaoti te whārite t=\frac{-64±32}{-32} ina he tango te ±. Tango 32 mai i -64.
t=3
Whakawehe -96 ki te -32.
t=1 t=3
Kua oti te whārite te whakatau.
-16t^{2}+64t+80=128
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-16t^{2}+64t+80-80=128-80
Me tango 80 mai i ngā taha e rua o te whārite.
-16t^{2}+64t=128-80
Mā te tango i te 80 i a ia ake anō ka toe ko te 0.
-16t^{2}+64t=48
Tango 80 mai i 128.
\frac{-16t^{2}+64t}{-16}=\frac{48}{-16}
Whakawehea ngā taha e rua ki te -16.
t^{2}+\frac{64}{-16}t=\frac{48}{-16}
Mā te whakawehe ki te -16 ka wetekia te whakareanga ki te -16.
t^{2}-4t=\frac{48}{-16}
Whakawehe 64 ki te -16.
t^{2}-4t=-3
Whakawehe 48 ki te -16.
t^{2}-4t+\left(-2\right)^{2}=-3+\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}-4t+4=-3+4
Pūrua -2.
t^{2}-4t+4=1
Tāpiri -3 ki te 4.
\left(t-2\right)^{2}=1
Tauwehea t^{2}-4t+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-2\right)^{2}}=\sqrt{1}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t-2=1 t-2=-1
Whakarūnātia.
t=3 t=1
Me tāpiri 2 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}