Tīpoka ki ngā ihirangi matua
Whakaoti mō r
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-16r^{2}=2
Me tāpiri te 2 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
r^{2}=\frac{2}{-16}
Whakawehea ngā taha e rua ki te -16.
r^{2}=-\frac{1}{8}
Whakahekea te hautanga \frac{2}{-16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
r=\frac{\sqrt{2}i}{4} r=-\frac{\sqrt{2}i}{4}
Kua oti te whārite te whakatau.
-16r^{2}-2=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
r=\frac{0±\sqrt{0^{2}-4\left(-16\right)\left(-2\right)}}{2\left(-16\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -16 mō a, 0 mō b, me -2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{0±\sqrt{-4\left(-16\right)\left(-2\right)}}{2\left(-16\right)}
Pūrua 0.
r=\frac{0±\sqrt{64\left(-2\right)}}{2\left(-16\right)}
Whakareatia -4 ki te -16.
r=\frac{0±\sqrt{-128}}{2\left(-16\right)}
Whakareatia 64 ki te -2.
r=\frac{0±8\sqrt{2}i}{2\left(-16\right)}
Tuhia te pūtakerua o te -128.
r=\frac{0±8\sqrt{2}i}{-32}
Whakareatia 2 ki te -16.
r=-\frac{\sqrt{2}i}{4}
Nā, me whakaoti te whārite r=\frac{0±8\sqrt{2}i}{-32} ina he tāpiri te ±.
r=\frac{\sqrt{2}i}{4}
Nā, me whakaoti te whārite r=\frac{0±8\sqrt{2}i}{-32} ina he tango te ±.
r=-\frac{\sqrt{2}i}{4} r=\frac{\sqrt{2}i}{4}
Kua oti te whārite te whakatau.