Whakaoti mō K
K=\frac{\sqrt{127477}}{2072}+\frac{9}{74}\approx 0.293937844
K=-\frac{\sqrt{127477}}{2072}+\frac{9}{74}\approx -0.050694601
Tohaina
Kua tāruatia ki te papatopenga
148K^{2}-36K-\frac{247}{112}=0
Pahekotia te -16K^{2} me 164K^{2}, ka 148K^{2}.
K=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 148\left(-\frac{247}{112}\right)}}{2\times 148}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 148 mō a, -36 mō b, me -\frac{247}{112} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
K=\frac{-\left(-36\right)±\sqrt{1296-4\times 148\left(-\frac{247}{112}\right)}}{2\times 148}
Pūrua -36.
K=\frac{-\left(-36\right)±\sqrt{1296-592\left(-\frac{247}{112}\right)}}{2\times 148}
Whakareatia -4 ki te 148.
K=\frac{-\left(-36\right)±\sqrt{1296+\frac{9139}{7}}}{2\times 148}
Whakareatia -592 ki te -\frac{247}{112}.
K=\frac{-\left(-36\right)±\sqrt{\frac{18211}{7}}}{2\times 148}
Tāpiri 1296 ki te \frac{9139}{7}.
K=\frac{-\left(-36\right)±\frac{\sqrt{127477}}{7}}{2\times 148}
Tuhia te pūtakerua o te \frac{18211}{7}.
K=\frac{36±\frac{\sqrt{127477}}{7}}{2\times 148}
Ko te tauaro o -36 ko 36.
K=\frac{36±\frac{\sqrt{127477}}{7}}{296}
Whakareatia 2 ki te 148.
K=\frac{\frac{\sqrt{127477}}{7}+36}{296}
Nā, me whakaoti te whārite K=\frac{36±\frac{\sqrt{127477}}{7}}{296} ina he tāpiri te ±. Tāpiri 36 ki te \frac{\sqrt{127477}}{7}.
K=\frac{\sqrt{127477}}{2072}+\frac{9}{74}
Whakawehe 36+\frac{\sqrt{127477}}{7} ki te 296.
K=\frac{-\frac{\sqrt{127477}}{7}+36}{296}
Nā, me whakaoti te whārite K=\frac{36±\frac{\sqrt{127477}}{7}}{296} ina he tango te ±. Tango \frac{\sqrt{127477}}{7} mai i 36.
K=-\frac{\sqrt{127477}}{2072}+\frac{9}{74}
Whakawehe 36-\frac{\sqrt{127477}}{7} ki te 296.
K=\frac{\sqrt{127477}}{2072}+\frac{9}{74} K=-\frac{\sqrt{127477}}{2072}+\frac{9}{74}
Kua oti te whārite te whakatau.
148K^{2}-36K-\frac{247}{112}=0
Pahekotia te -16K^{2} me 164K^{2}, ka 148K^{2}.
148K^{2}-36K=\frac{247}{112}
Me tāpiri te \frac{247}{112} ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{148K^{2}-36K}{148}=\frac{\frac{247}{112}}{148}
Whakawehea ngā taha e rua ki te 148.
K^{2}+\left(-\frac{36}{148}\right)K=\frac{\frac{247}{112}}{148}
Mā te whakawehe ki te 148 ka wetekia te whakareanga ki te 148.
K^{2}-\frac{9}{37}K=\frac{\frac{247}{112}}{148}
Whakahekea te hautanga \frac{-36}{148} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
K^{2}-\frac{9}{37}K=\frac{247}{16576}
Whakawehe \frac{247}{112} ki te 148.
K^{2}-\frac{9}{37}K+\left(-\frac{9}{74}\right)^{2}=\frac{247}{16576}+\left(-\frac{9}{74}\right)^{2}
Whakawehea te -\frac{9}{37}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{9}{74}. Nā, tāpiria te pūrua o te -\frac{9}{74} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
K^{2}-\frac{9}{37}K+\frac{81}{5476}=\frac{247}{16576}+\frac{81}{5476}
Pūruatia -\frac{9}{74} mā te pūrua i te taurunga me te tauraro o te hautanga.
K^{2}-\frac{9}{37}K+\frac{81}{5476}=\frac{18211}{613312}
Tāpiri \frac{247}{16576} ki te \frac{81}{5476} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(K-\frac{9}{74}\right)^{2}=\frac{18211}{613312}
Tauwehea K^{2}-\frac{9}{37}K+\frac{81}{5476}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(K-\frac{9}{74}\right)^{2}}=\sqrt{\frac{18211}{613312}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
K-\frac{9}{74}=\frac{\sqrt{127477}}{2072} K-\frac{9}{74}=-\frac{\sqrt{127477}}{2072}
Whakarūnātia.
K=\frac{\sqrt{127477}}{2072}+\frac{9}{74} K=-\frac{\sqrt{127477}}{2072}+\frac{9}{74}
Me tāpiri \frac{9}{74} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}