Tauwehe
-\left(9x-4\right)^{2}
Aromātai
-\left(9x-4\right)^{2}
Graph
Tohaina
Kua tāruatia ki te papatopenga
-81x^{2}+72x-16
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=72 ab=-81\left(-16\right)=1296
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei -81x^{2}+ax+bx-16. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,1296 2,648 3,432 4,324 6,216 8,162 9,144 12,108 16,81 18,72 24,54 27,48 36,36
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 1296.
1+1296=1297 2+648=650 3+432=435 4+324=328 6+216=222 8+162=170 9+144=153 12+108=120 16+81=97 18+72=90 24+54=78 27+48=75 36+36=72
Tātaihia te tapeke mō ia takirua.
a=36 b=36
Ko te otinga te takirua ka hoatu i te tapeke 72.
\left(-81x^{2}+36x\right)+\left(36x-16\right)
Tuhia anō te -81x^{2}+72x-16 hei \left(-81x^{2}+36x\right)+\left(36x-16\right).
-9x\left(9x-4\right)+4\left(9x-4\right)
Tauwehea te -9x i te tuatahi me te 4 i te rōpū tuarua.
\left(9x-4\right)\left(-9x+4\right)
Whakatauwehea atu te kīanga pātahi 9x-4 mā te whakamahi i te āhuatanga tātai tohatoha.
-81x^{2}+72x-16=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-72±\sqrt{72^{2}-4\left(-81\right)\left(-16\right)}}{2\left(-81\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-72±\sqrt{5184-4\left(-81\right)\left(-16\right)}}{2\left(-81\right)}
Pūrua 72.
x=\frac{-72±\sqrt{5184+324\left(-16\right)}}{2\left(-81\right)}
Whakareatia -4 ki te -81.
x=\frac{-72±\sqrt{5184-5184}}{2\left(-81\right)}
Whakareatia 324 ki te -16.
x=\frac{-72±\sqrt{0}}{2\left(-81\right)}
Tāpiri 5184 ki te -5184.
x=\frac{-72±0}{2\left(-81\right)}
Tuhia te pūtakerua o te 0.
x=\frac{-72±0}{-162}
Whakareatia 2 ki te -81.
-81x^{2}+72x-16=-81\left(x-\frac{4}{9}\right)\left(x-\frac{4}{9}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{4}{9} mō te x_{1} me te \frac{4}{9} mō te x_{2}.
-81x^{2}+72x-16=-81\times \frac{-9x+4}{-9}\left(x-\frac{4}{9}\right)
Tango \frac{4}{9} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
-81x^{2}+72x-16=-81\times \frac{-9x+4}{-9}\times \frac{-9x+4}{-9}
Tango \frac{4}{9} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
-81x^{2}+72x-16=-81\times \frac{\left(-9x+4\right)\left(-9x+4\right)}{-9\left(-9\right)}
Whakareatia \frac{-9x+4}{-9} ki te \frac{-9x+4}{-9} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
-81x^{2}+72x-16=-81\times \frac{\left(-9x+4\right)\left(-9x+4\right)}{81}
Whakareatia -9 ki te -9.
-81x^{2}+72x-16=-\left(-9x+4\right)\left(-9x+4\right)
Whakakorea atu te tauwehe pūnoa nui rawa 81 i roto i te -81 me te 81.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}