Aromātai
-\frac{45b}{2}
Kimi Pārōnaki e ai ki b
-\frac{45}{2} = -22\frac{1}{2} = -22.5
Tohaina
Kua tāruatia ki te papatopenga
\frac{-15\times 3}{2}b
Tuhia te -15\times \frac{3}{2} hei hautanga kotahi.
\frac{-45}{2}b
Whakareatia te -15 ki te 3, ka -45.
-\frac{45}{2}b
Ka taea te hautanga \frac{-45}{2} te tuhi anō ko -\frac{45}{2} mā te tango i te tohu tōraro.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{-15\times 3}{2}b)
Tuhia te -15\times \frac{3}{2} hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{-45}{2}b)
Whakareatia te -15 ki te 3, ka -45.
\frac{\mathrm{d}}{\mathrm{d}b}(-\frac{45}{2}b)
Ka taea te hautanga \frac{-45}{2} te tuhi anō ko -\frac{45}{2} mā te tango i te tohu tōraro.
-\frac{45}{2}b^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
-\frac{45}{2}b^{0}
Tango 1 mai i 1.
-\frac{45}{2}
Mō tētahi kupu t mahue te 0, t^{0}=1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}