Tauwehe
7\left(9-x\right)\left(2x-1\right)
Aromātai
-14x^{2}+133x-63
Graph
Tohaina
Kua tāruatia ki te papatopenga
7\left(-2x^{2}+19x-9\right)
Tauwehea te 7.
a+b=19 ab=-2\left(-9\right)=18
Whakaarohia te -2x^{2}+19x-9. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei -2x^{2}+ax+bx-9. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,18 2,9 3,6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 18.
1+18=19 2+9=11 3+6=9
Tātaihia te tapeke mō ia takirua.
a=18 b=1
Ko te otinga te takirua ka hoatu i te tapeke 19.
\left(-2x^{2}+18x\right)+\left(x-9\right)
Tuhia anō te -2x^{2}+19x-9 hei \left(-2x^{2}+18x\right)+\left(x-9\right).
2x\left(-x+9\right)-\left(-x+9\right)
Tauwehea te 2x i te tuatahi me te -1 i te rōpū tuarua.
\left(-x+9\right)\left(2x-1\right)
Whakatauwehea atu te kīanga pātahi -x+9 mā te whakamahi i te āhuatanga tātai tohatoha.
7\left(-x+9\right)\left(2x-1\right)
Me tuhi anō te kīanga whakatauwehe katoa.
-14x^{2}+133x-63=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-133±\sqrt{133^{2}-4\left(-14\right)\left(-63\right)}}{2\left(-14\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-133±\sqrt{17689-4\left(-14\right)\left(-63\right)}}{2\left(-14\right)}
Pūrua 133.
x=\frac{-133±\sqrt{17689+56\left(-63\right)}}{2\left(-14\right)}
Whakareatia -4 ki te -14.
x=\frac{-133±\sqrt{17689-3528}}{2\left(-14\right)}
Whakareatia 56 ki te -63.
x=\frac{-133±\sqrt{14161}}{2\left(-14\right)}
Tāpiri 17689 ki te -3528.
x=\frac{-133±119}{2\left(-14\right)}
Tuhia te pūtakerua o te 14161.
x=\frac{-133±119}{-28}
Whakareatia 2 ki te -14.
x=-\frac{14}{-28}
Nā, me whakaoti te whārite x=\frac{-133±119}{-28} ina he tāpiri te ±. Tāpiri -133 ki te 119.
x=\frac{1}{2}
Whakahekea te hautanga \frac{-14}{-28} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 14.
x=-\frac{252}{-28}
Nā, me whakaoti te whārite x=\frac{-133±119}{-28} ina he tango te ±. Tango 119 mai i -133.
x=9
Whakawehe -252 ki te -28.
-14x^{2}+133x-63=-14\left(x-\frac{1}{2}\right)\left(x-9\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{1}{2} mō te x_{1} me te 9 mō te x_{2}.
-14x^{2}+133x-63=-14\times \frac{-2x+1}{-2}\left(x-9\right)
Tango \frac{1}{2} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
-14x^{2}+133x-63=7\left(-2x+1\right)\left(x-9\right)
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te -14 me te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}