Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

13\left(-x^{2}-x\right)
Tauwehea te 13.
x\left(-x-1\right)
Whakaarohia te -x^{2}-x. Tauwehea te x.
13x\left(-x-1\right)
Me tuhi anō te kīanga whakatauwehe katoa.
-13x^{2}-13x=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}}}{2\left(-13\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-13\right)±13}{2\left(-13\right)}
Tuhia te pūtakerua o te \left(-13\right)^{2}.
x=\frac{13±13}{2\left(-13\right)}
Ko te tauaro o -13 ko 13.
x=\frac{13±13}{-26}
Whakareatia 2 ki te -13.
x=\frac{26}{-26}
Nā, me whakaoti te whārite x=\frac{13±13}{-26} ina he tāpiri te ±. Tāpiri 13 ki te 13.
x=-1
Whakawehe 26 ki te -26.
x=\frac{0}{-26}
Nā, me whakaoti te whārite x=\frac{13±13}{-26} ina he tango te ±. Tango 13 mai i 13.
x=0
Whakawehe 0 ki te -26.
-13x^{2}-13x=-13\left(x-\left(-1\right)\right)x
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -1 mō te x_{1} me te 0 mō te x_{2}.
-13x^{2}-13x=-13\left(x+1\right)x
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.