Whakaoti mō g
g=-t
Whakaoti mō t
t=-g
Tohaina
Kua tāruatia ki te papatopenga
-g-t=-13+13
Me tāpiri te 13 ki ngā taha e rua.
-g-t=0
Tāpirihia te -13 ki te 13, ka 0.
-g=t
Me tāpiri te t ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{-g}{-1}=\frac{t}{-1}
Whakawehea ngā taha e rua ki te -1.
g=\frac{t}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
g=-t
Whakawehe t ki te -1.
-g-t=-13+13
Me tāpiri te 13 ki ngā taha e rua.
-g-t=0
Tāpirihia te -13 ki te 13, ka 0.
-t=g
Me tāpiri te g ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{-t}{-1}=\frac{g}{-1}
Whakawehea ngā taha e rua ki te -1.
t=\frac{g}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
t=-g
Whakawehe g ki te -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}