Whakaoti mō n
n=1
Tohaina
Kua tāruatia ki te papatopenga
-13+6n=-35n+28
Whakamahia te āhuatanga tohatoha hei whakarea te -7 ki te 5n-4.
-13+6n+35n=28
Me tāpiri te 35n ki ngā taha e rua.
-13+41n=28
Pahekotia te 6n me 35n, ka 41n.
41n=28+13
Me tāpiri te 13 ki ngā taha e rua.
41n=41
Tāpirihia te 28 ki te 13, ka 41.
n=\frac{41}{41}
Whakawehea ngā taha e rua ki te 41.
n=1
Whakawehea te 41 ki te 41, kia riro ko 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}