Tauwehe
\left(3-4x\right)\left(3x+2\right)
Aromātai
6+x-12x^{2}
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=1 ab=-12\times 6=-72
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei -12x^{2}+ax+bx+6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,72 -2,36 -3,24 -4,18 -6,12 -8,9
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -72.
-1+72=71 -2+36=34 -3+24=21 -4+18=14 -6+12=6 -8+9=1
Tātaihia te tapeke mō ia takirua.
a=9 b=-8
Ko te otinga te takirua ka hoatu i te tapeke 1.
\left(-12x^{2}+9x\right)+\left(-8x+6\right)
Tuhia anō te -12x^{2}+x+6 hei \left(-12x^{2}+9x\right)+\left(-8x+6\right).
3x\left(-4x+3\right)+2\left(-4x+3\right)
Tauwehea te 3x i te tuatahi me te 2 i te rōpū tuarua.
\left(-4x+3\right)\left(3x+2\right)
Whakatauwehea atu te kīanga pātahi -4x+3 mā te whakamahi i te āhuatanga tātai tohatoha.
-12x^{2}+x+6=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-1±\sqrt{1^{2}-4\left(-12\right)\times 6}}{2\left(-12\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-1±\sqrt{1-4\left(-12\right)\times 6}}{2\left(-12\right)}
Pūrua 1.
x=\frac{-1±\sqrt{1+48\times 6}}{2\left(-12\right)}
Whakareatia -4 ki te -12.
x=\frac{-1±\sqrt{1+288}}{2\left(-12\right)}
Whakareatia 48 ki te 6.
x=\frac{-1±\sqrt{289}}{2\left(-12\right)}
Tāpiri 1 ki te 288.
x=\frac{-1±17}{2\left(-12\right)}
Tuhia te pūtakerua o te 289.
x=\frac{-1±17}{-24}
Whakareatia 2 ki te -12.
x=\frac{16}{-24}
Nā, me whakaoti te whārite x=\frac{-1±17}{-24} ina he tāpiri te ±. Tāpiri -1 ki te 17.
x=-\frac{2}{3}
Whakahekea te hautanga \frac{16}{-24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
x=-\frac{18}{-24}
Nā, me whakaoti te whārite x=\frac{-1±17}{-24} ina he tango te ±. Tango 17 mai i -1.
x=\frac{3}{4}
Whakahekea te hautanga \frac{-18}{-24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
-12x^{2}+x+6=-12\left(x-\left(-\frac{2}{3}\right)\right)\left(x-\frac{3}{4}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\frac{2}{3} mō te x_{1} me te \frac{3}{4} mō te x_{2}.
-12x^{2}+x+6=-12\left(x+\frac{2}{3}\right)\left(x-\frac{3}{4}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
-12x^{2}+x+6=-12\times \frac{-3x-2}{-3}\left(x-\frac{3}{4}\right)
Tāpiri \frac{2}{3} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
-12x^{2}+x+6=-12\times \frac{-3x-2}{-3}\times \frac{-4x+3}{-4}
Tango \frac{3}{4} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
-12x^{2}+x+6=-12\times \frac{\left(-3x-2\right)\left(-4x+3\right)}{-3\left(-4\right)}
Whakareatia \frac{-3x-2}{-3} ki te \frac{-4x+3}{-4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
-12x^{2}+x+6=-12\times \frac{\left(-3x-2\right)\left(-4x+3\right)}{12}
Whakareatia -3 ki te -4.
-12x^{2}+x+6=-\left(-3x-2\right)\left(-4x+3\right)
Whakakorea atu te tauwehe pūnoa nui rawa 12 i roto i te -12 me te 12.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}