Whakaoti mō u
u = -\frac{3}{2} = -1\frac{1}{2} = -1.5
Tohaina
Kua tāruatia ki te papatopenga
-12u-9-4u^{2}=0
Tangohia te 4u^{2} mai i ngā taha e rua.
-4u^{2}-12u-9=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-12 ab=-4\left(-9\right)=36
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -4u^{2}+au+bu-9. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 36.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
Tātaihia te tapeke mō ia takirua.
a=-6 b=-6
Ko te otinga te takirua ka hoatu i te tapeke -12.
\left(-4u^{2}-6u\right)+\left(-6u-9\right)
Tuhia anō te -4u^{2}-12u-9 hei \left(-4u^{2}-6u\right)+\left(-6u-9\right).
2u\left(-2u-3\right)+3\left(-2u-3\right)
Tauwehea te 2u i te tuatahi me te 3 i te rōpū tuarua.
\left(-2u-3\right)\left(2u+3\right)
Whakatauwehea atu te kīanga pātahi -2u-3 mā te whakamahi i te āhuatanga tātai tohatoha.
u=-\frac{3}{2} u=-\frac{3}{2}
Hei kimi otinga whārite, me whakaoti te -2u-3=0 me te 2u+3=0.
-12u-9-4u^{2}=0
Tangohia te 4u^{2} mai i ngā taha e rua.
-4u^{2}-12u-9=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
u=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-4\right)\left(-9\right)}}{2\left(-4\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -4 mō a, -12 mō b, me -9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
u=\frac{-\left(-12\right)±\sqrt{144-4\left(-4\right)\left(-9\right)}}{2\left(-4\right)}
Pūrua -12.
u=\frac{-\left(-12\right)±\sqrt{144+16\left(-9\right)}}{2\left(-4\right)}
Whakareatia -4 ki te -4.
u=\frac{-\left(-12\right)±\sqrt{144-144}}{2\left(-4\right)}
Whakareatia 16 ki te -9.
u=\frac{-\left(-12\right)±\sqrt{0}}{2\left(-4\right)}
Tāpiri 144 ki te -144.
u=-\frac{-12}{2\left(-4\right)}
Tuhia te pūtakerua o te 0.
u=\frac{12}{2\left(-4\right)}
Ko te tauaro o -12 ko 12.
u=\frac{12}{-8}
Whakareatia 2 ki te -4.
u=-\frac{3}{2}
Whakahekea te hautanga \frac{12}{-8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
-12u-9-4u^{2}=0
Tangohia te 4u^{2} mai i ngā taha e rua.
-12u-4u^{2}=9
Me tāpiri te 9 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
-4u^{2}-12u=9
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-4u^{2}-12u}{-4}=\frac{9}{-4}
Whakawehea ngā taha e rua ki te -4.
u^{2}+\left(-\frac{12}{-4}\right)u=\frac{9}{-4}
Mā te whakawehe ki te -4 ka wetekia te whakareanga ki te -4.
u^{2}+3u=\frac{9}{-4}
Whakawehe -12 ki te -4.
u^{2}+3u=-\frac{9}{4}
Whakawehe 9 ki te -4.
u^{2}+3u+\left(\frac{3}{2}\right)^{2}=-\frac{9}{4}+\left(\frac{3}{2}\right)^{2}
Whakawehea te 3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{2}. Nā, tāpiria te pūrua o te \frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
u^{2}+3u+\frac{9}{4}=\frac{-9+9}{4}
Pūruatia \frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
u^{2}+3u+\frac{9}{4}=0
Tāpiri -\frac{9}{4} ki te \frac{9}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(u+\frac{3}{2}\right)^{2}=0
Tauwehea u^{2}+3u+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(u+\frac{3}{2}\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
u+\frac{3}{2}=0 u+\frac{3}{2}=0
Whakarūnātia.
u=-\frac{3}{2} u=-\frac{3}{2}
Me tango \frac{3}{2} mai i ngā taha e rua o te whārite.
u=-\frac{3}{2}
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}