Whakaoti mō x
x=\frac{3\left(y-4\right)}{4}
Whakaoti mō y
y=\frac{4\left(x+3\right)}{3}
Graph
Tohaina
Kua tāruatia ki te papatopenga
-3y+4x=-12
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
4x=-12+3y
Me tāpiri te 3y ki ngā taha e rua.
4x=3y-12
He hanga arowhānui tō te whārite.
\frac{4x}{4}=\frac{3y-12}{4}
Whakawehea ngā taha e rua ki te 4.
x=\frac{3y-12}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x=\frac{3y}{4}-3
Whakawehe -12+3y ki te 4.
-3y+4x=-12
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-3y=-12-4x
Tangohia te 4x mai i ngā taha e rua.
-3y=-4x-12
He hanga arowhānui tō te whārite.
\frac{-3y}{-3}=\frac{-4x-12}{-3}
Whakawehea ngā taha e rua ki te -3.
y=\frac{-4x-12}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
y=\frac{4x}{3}+4
Whakawehe -12-4x ki te -3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}