Aromātai
f+1
Kimi Pārōnaki e ai ki f
1
Tohaina
Kua tāruatia ki te papatopenga
-12f+6+4+13f-9
Pahekotia te -11f me -f, ka -12f.
-12f+10+13f-9
Tāpirihia te 6 ki te 4, ka 10.
f+10-9
Pahekotia te -12f me 13f, ka f.
f+1
Tangohia te 9 i te 10, ka 1.
\frac{\mathrm{d}}{\mathrm{d}f}(-12f+6+4+13f-9)
Pahekotia te -11f me -f, ka -12f.
\frac{\mathrm{d}}{\mathrm{d}f}(-12f+10+13f-9)
Tāpirihia te 6 ki te 4, ka 10.
\frac{\mathrm{d}}{\mathrm{d}f}(f+10-9)
Pahekotia te -12f me 13f, ka f.
\frac{\mathrm{d}}{\mathrm{d}f}(f+1)
Tangohia te 9 i te 10, ka 1.
f^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
f^{0}
Tango 1 mai i 1.
1
Mō tētahi kupu t mahue te 0, t^{0}=1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}