Whakaoti mō T
T = \frac{5088423}{16777} = 303\frac{4992}{16777} \approx 303.297550218
Tohaina
Kua tāruatia ki te papatopenga
-103847=3\left(-393546+60433T-18009034\right)+4\left(-241845+51143\left(T-298\right)\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 60433 ki te T-298.
-103847=3\left(-18402580+60433T\right)+4\left(-241845+51143\left(T-298\right)\right)
Tangohia te 18009034 i te -393546, ka -18402580.
-103847=-55207740+181299T+4\left(-241845+51143\left(T-298\right)\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te -18402580+60433T.
-103847=-55207740+181299T+4\left(-241845+51143T-15240614\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 51143 ki te T-298.
-103847=-55207740+181299T+4\left(-15482459+51143T\right)
Tangohia te 15240614 i te -241845, ka -15482459.
-103847=-55207740+181299T-61929836+204572T
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te -15482459+51143T.
-103847=-117137576+181299T+204572T
Tangohia te 61929836 i te -55207740, ka -117137576.
-103847=-117137576+385871T
Pahekotia te 181299T me 204572T, ka 385871T.
-117137576+385871T=-103847
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
385871T=-103847+117137576
Me tāpiri te 117137576 ki ngā taha e rua.
385871T=117033729
Tāpirihia te -103847 ki te 117137576, ka 117033729.
T=\frac{117033729}{385871}
Whakawehea ngā taha e rua ki te 385871.
T=\frac{5088423}{16777}
Whakahekea te hautanga \frac{117033729}{385871} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 23.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}