Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-10x^{2}\times 2-10xx=3x
Whakareatia te x ki te x, ka x^{2}.
-10x^{2}\times 2-10x^{2}=3x
Whakareatia te x ki te x, ka x^{2}.
-20x^{2}-10x^{2}=3x
Whakareatia te -10 ki te 2, ka -20.
-30x^{2}=3x
Pahekotia te -20x^{2} me -10x^{2}, ka -30x^{2}.
-30x^{2}-3x=0
Tangohia te 3x mai i ngā taha e rua.
x\left(-30x-3\right)=0
Tauwehea te x.
x=0 x=-\frac{1}{10}
Hei kimi otinga whārite, me whakaoti te x=0 me te -30x-3=0.
-10x^{2}\times 2-10xx=3x
Whakareatia te x ki te x, ka x^{2}.
-10x^{2}\times 2-10x^{2}=3x
Whakareatia te x ki te x, ka x^{2}.
-20x^{2}-10x^{2}=3x
Whakareatia te -10 ki te 2, ka -20.
-30x^{2}=3x
Pahekotia te -20x^{2} me -10x^{2}, ka -30x^{2}.
-30x^{2}-3x=0
Tangohia te 3x mai i ngā taha e rua.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}}}{2\left(-30\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -30 mō a, -3 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±3}{2\left(-30\right)}
Tuhia te pūtakerua o te \left(-3\right)^{2}.
x=\frac{3±3}{2\left(-30\right)}
Ko te tauaro o -3 ko 3.
x=\frac{3±3}{-60}
Whakareatia 2 ki te -30.
x=\frac{6}{-60}
Nā, me whakaoti te whārite x=\frac{3±3}{-60} ina he tāpiri te ±. Tāpiri 3 ki te 3.
x=-\frac{1}{10}
Whakahekea te hautanga \frac{6}{-60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=\frac{0}{-60}
Nā, me whakaoti te whārite x=\frac{3±3}{-60} ina he tango te ±. Tango 3 mai i 3.
x=0
Whakawehe 0 ki te -60.
x=-\frac{1}{10} x=0
Kua oti te whārite te whakatau.
-10x^{2}\times 2-10xx=3x
Whakareatia te x ki te x, ka x^{2}.
-10x^{2}\times 2-10x^{2}=3x
Whakareatia te x ki te x, ka x^{2}.
-20x^{2}-10x^{2}=3x
Whakareatia te -10 ki te 2, ka -20.
-30x^{2}=3x
Pahekotia te -20x^{2} me -10x^{2}, ka -30x^{2}.
-30x^{2}-3x=0
Tangohia te 3x mai i ngā taha e rua.
\frac{-30x^{2}-3x}{-30}=\frac{0}{-30}
Whakawehea ngā taha e rua ki te -30.
x^{2}+\left(-\frac{3}{-30}\right)x=\frac{0}{-30}
Mā te whakawehe ki te -30 ka wetekia te whakareanga ki te -30.
x^{2}+\frac{1}{10}x=\frac{0}{-30}
Whakahekea te hautanga \frac{-3}{-30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}+\frac{1}{10}x=0
Whakawehe 0 ki te -30.
x^{2}+\frac{1}{10}x+\left(\frac{1}{20}\right)^{2}=\left(\frac{1}{20}\right)^{2}
Whakawehea te \frac{1}{10}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{20}. Nā, tāpiria te pūrua o te \frac{1}{20} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{1}{10}x+\frac{1}{400}=\frac{1}{400}
Pūruatia \frac{1}{20} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x+\frac{1}{20}\right)^{2}=\frac{1}{400}
Tauwehea x^{2}+\frac{1}{10}x+\frac{1}{400}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{20}\right)^{2}}=\sqrt{\frac{1}{400}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{20}=\frac{1}{20} x+\frac{1}{20}=-\frac{1}{20}
Whakarūnātia.
x=0 x=-\frac{1}{10}
Me tango \frac{1}{20} mai i ngā taha e rua o te whārite.