Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-10x^{2}+7x-7+15x^{2}-9
Pahekotia te -x me 8x, ka 7x.
5x^{2}+7x-7-9
Pahekotia te -10x^{2} me 15x^{2}, ka 5x^{2}.
5x^{2}+7x-16
Tangohia te 9 i te -7, ka -16.
factor(-10x^{2}+7x-7+15x^{2}-9)
Pahekotia te -x me 8x, ka 7x.
factor(5x^{2}+7x-7-9)
Pahekotia te -10x^{2} me 15x^{2}, ka 5x^{2}.
factor(5x^{2}+7x-16)
Tangohia te 9 i te -7, ka -16.
5x^{2}+7x-16=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-7±\sqrt{7^{2}-4\times 5\left(-16\right)}}{2\times 5}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-7±\sqrt{49-4\times 5\left(-16\right)}}{2\times 5}
Pūrua 7.
x=\frac{-7±\sqrt{49-20\left(-16\right)}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-7±\sqrt{49+320}}{2\times 5}
Whakareatia -20 ki te -16.
x=\frac{-7±\sqrt{369}}{2\times 5}
Tāpiri 49 ki te 320.
x=\frac{-7±3\sqrt{41}}{2\times 5}
Tuhia te pūtakerua o te 369.
x=\frac{-7±3\sqrt{41}}{10}
Whakareatia 2 ki te 5.
x=\frac{3\sqrt{41}-7}{10}
Nā, me whakaoti te whārite x=\frac{-7±3\sqrt{41}}{10} ina he tāpiri te ±. Tāpiri -7 ki te 3\sqrt{41}.
x=\frac{-3\sqrt{41}-7}{10}
Nā, me whakaoti te whārite x=\frac{-7±3\sqrt{41}}{10} ina he tango te ±. Tango 3\sqrt{41} mai i -7.
5x^{2}+7x-16=5\left(x-\frac{3\sqrt{41}-7}{10}\right)\left(x-\frac{-3\sqrt{41}-7}{10}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{-7+3\sqrt{41}}{10} mō te x_{1} me te \frac{-7-3\sqrt{41}}{10} mō te x_{2}.