Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

25m^{2}-10m+1
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-10 ab=25\times 1=25
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 25m^{2}+am+bm+1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-25 -5,-5
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 25.
-1-25=-26 -5-5=-10
Tātaihia te tapeke mō ia takirua.
a=-5 b=-5
Ko te otinga te takirua ka hoatu i te tapeke -10.
\left(25m^{2}-5m\right)+\left(-5m+1\right)
Tuhia anō te 25m^{2}-10m+1 hei \left(25m^{2}-5m\right)+\left(-5m+1\right).
5m\left(5m-1\right)-\left(5m-1\right)
Tauwehea te 5m i te tuatahi me te -1 i te rōpū tuarua.
\left(5m-1\right)\left(5m-1\right)
Whakatauwehea atu te kīanga pātahi 5m-1 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(5m-1\right)^{2}
Tuhia anōtia hei pūrua huarua.
factor(25m^{2}-10m+1)
Ko te tikanga tātai o tēnei huatoru he pūrua huatoru, ka whakareatia pea e tētahi tauwehe pātahi. Ka taea ngā pūrua huatoru te tauwehe mā te kimi i ngā pūtakerua o ngā kīanga tau ārahi, autō hoki.
gcf(25,-10,1)=1
Kimihia te tauwehe pātahi nui rawa o ngā tau whakarea.
\sqrt{25m^{2}}=5m
Kimihia te pūtakerua o te kīanga tau ārahi, 25m^{2}.
\left(5m-1\right)^{2}
Ko te pūrua huatoru te pūrua o te huarua ko te tapeke tērā, te huatango rānei o ngā pūtakerua o ngā kīanga tau ārahi, autō hoki, e whakaritea ai te tohu e te tohu o te kīanga tau waenga o te pūrua huatoru.
25m^{2}-10m+1=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
m=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 25}}{2\times 25}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
m=\frac{-\left(-10\right)±\sqrt{100-4\times 25}}{2\times 25}
Pūrua -10.
m=\frac{-\left(-10\right)±\sqrt{100-100}}{2\times 25}
Whakareatia -4 ki te 25.
m=\frac{-\left(-10\right)±\sqrt{0}}{2\times 25}
Tāpiri 100 ki te -100.
m=\frac{-\left(-10\right)±0}{2\times 25}
Tuhia te pūtakerua o te 0.
m=\frac{10±0}{2\times 25}
Ko te tauaro o -10 ko 10.
m=\frac{10±0}{50}
Whakareatia 2 ki te 25.
25m^{2}-10m+1=25\left(m-\frac{1}{5}\right)\left(m-\frac{1}{5}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{1}{5} mō te x_{1} me te \frac{1}{5} mō te x_{2}.
25m^{2}-10m+1=25\times \frac{5m-1}{5}\left(m-\frac{1}{5}\right)
Tango \frac{1}{5} mai i m mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
25m^{2}-10m+1=25\times \frac{5m-1}{5}\times \frac{5m-1}{5}
Tango \frac{1}{5} mai i m mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
25m^{2}-10m+1=25\times \frac{\left(5m-1\right)\left(5m-1\right)}{5\times 5}
Whakareatia \frac{5m-1}{5} ki te \frac{5m-1}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
25m^{2}-10m+1=25\times \frac{\left(5m-1\right)\left(5m-1\right)}{25}
Whakareatia 5 ki te 5.
25m^{2}-10m+1=\left(5m-1\right)\left(5m-1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 25 i roto i te 25 me te 25.