Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-x^{2}-8x-10=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-1\right)\left(-10\right)}}{2\left(-1\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-1\right)\left(-10\right)}}{2\left(-1\right)}
Pūrua -8.
x=\frac{-\left(-8\right)±\sqrt{64+4\left(-10\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-\left(-8\right)±\sqrt{64-40}}{2\left(-1\right)}
Whakareatia 4 ki te -10.
x=\frac{-\left(-8\right)±\sqrt{24}}{2\left(-1\right)}
Tāpiri 64 ki te -40.
x=\frac{-\left(-8\right)±2\sqrt{6}}{2\left(-1\right)}
Tuhia te pūtakerua o te 24.
x=\frac{8±2\sqrt{6}}{2\left(-1\right)}
Ko te tauaro o -8 ko 8.
x=\frac{8±2\sqrt{6}}{-2}
Whakareatia 2 ki te -1.
x=\frac{2\sqrt{6}+8}{-2}
Nā, me whakaoti te whārite x=\frac{8±2\sqrt{6}}{-2} ina he tāpiri te ±. Tāpiri 8 ki te 2\sqrt{6}.
x=-\left(\sqrt{6}+4\right)
Whakawehe 8+2\sqrt{6} ki te -2.
x=\frac{8-2\sqrt{6}}{-2}
Nā, me whakaoti te whārite x=\frac{8±2\sqrt{6}}{-2} ina he tango te ±. Tango 2\sqrt{6} mai i 8.
x=\sqrt{6}-4
Whakawehe 8-2\sqrt{6} ki te -2.
-x^{2}-8x-10=-\left(x-\left(-\left(\sqrt{6}+4\right)\right)\right)\left(x-\left(\sqrt{6}-4\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\left(4+\sqrt{6}\right) mō te x_{1} me te -4+\sqrt{6} mō te x_{2}.