Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-5x^{2}=-321+1
Me tāpiri te 1 ki ngā taha e rua.
-5x^{2}=-320
Tāpirihia te -321 ki te 1, ka -320.
x^{2}=\frac{-320}{-5}
Whakawehea ngā taha e rua ki te -5.
x^{2}=64
Whakawehea te -320 ki te -5, kia riro ko 64.
x=8 x=-8
Tuhia te pūtakerua o ngā taha e rua o te whārite.
-1-5x^{2}+321=0
Me tāpiri te 321 ki ngā taha e rua.
320-5x^{2}=0
Tāpirihia te -1 ki te 321, ka 320.
-5x^{2}+320=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-5\right)\times 320}}{2\left(-5\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -5 mō a, 0 mō b, me 320 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-5\right)\times 320}}{2\left(-5\right)}
Pūrua 0.
x=\frac{0±\sqrt{20\times 320}}{2\left(-5\right)}
Whakareatia -4 ki te -5.
x=\frac{0±\sqrt{6400}}{2\left(-5\right)}
Whakareatia 20 ki te 320.
x=\frac{0±80}{2\left(-5\right)}
Tuhia te pūtakerua o te 6400.
x=\frac{0±80}{-10}
Whakareatia 2 ki te -5.
x=-8
Nā, me whakaoti te whārite x=\frac{0±80}{-10} ina he tāpiri te ±. Whakawehe 80 ki te -10.
x=8
Nā, me whakaoti te whārite x=\frac{0±80}{-10} ina he tango te ±. Whakawehe -80 ki te -10.
x=-8 x=8
Kua oti te whārite te whakatau.