Aromātai
1
Tauwehe
1
Tohaina
Kua tāruatia ki te papatopenga
-1-\left(1-0\right)\times \frac{1}{3}\left(19-\frac{-5}{-\frac{1}{5}}\right)
Whakareatia te 0 ki te 5, ka 0.
-1-1\times \frac{1}{3}\left(19-\frac{-5}{-\frac{1}{5}}\right)
Tangohia te 0 i te 1, ka 1.
-1-\frac{1}{3}\left(19-\frac{-5}{-\frac{1}{5}}\right)
Whakareatia te 1 ki te \frac{1}{3}, ka \frac{1}{3}.
-1-\frac{1}{3}\left(19-\left(-5\left(-5\right)\right)\right)
Whakawehe -5 ki te -\frac{1}{5} mā te whakarea -5 ki te tau huripoki o -\frac{1}{5}.
-1-\frac{1}{3}\left(19-25\right)
Whakareatia te -5 ki te -5, ka 25.
-1-\frac{1}{3}\left(-6\right)
Tangohia te 25 i te 19, ka -6.
-1-\frac{-6}{3}
Whakareatia te \frac{1}{3} ki te -6, ka \frac{-6}{3}.
-1-\left(-2\right)
Whakawehea te -6 ki te 3, kia riro ko -2.
-1+2
Ko te tauaro o -2 ko 2.
1
Tāpirihia te -1 ki te 2, ka 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}