Aromātai
-\frac{11}{12}\approx -0.916666667
Tauwehe
-\frac{11}{12} = -0.9166666666666666
Tohaina
Kua tāruatia ki te papatopenga
-1-\left(-\frac{2}{4}+\frac{3}{4}+-2+\frac{5}{6}-\left(\frac{1}{3}-1\right)-\frac{1}{6}\right)-\frac{1}{3}
Ko te maha noa iti rawa atu o 2 me 4 ko 4. Me tahuri -\frac{1}{2} me \frac{3}{4} ki te hautau me te tautūnga 4.
-1-\left(\frac{-2+3}{4}+-2+\frac{5}{6}-\left(\frac{1}{3}-1\right)-\frac{1}{6}\right)-\frac{1}{3}
Tā te mea he rite te tauraro o -\frac{2}{4} me \frac{3}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-1-\left(\frac{1}{4}+-2+\frac{5}{6}-\left(\frac{1}{3}-1\right)-\frac{1}{6}\right)-\frac{1}{3}
Tāpirihia te -2 ki te 3, ka 1.
-1-\left(\frac{1}{4}+-\frac{12}{6}+\frac{5}{6}-\left(\frac{1}{3}-1\right)-\frac{1}{6}\right)-\frac{1}{3}
Me tahuri te -2 ki te hautau -\frac{12}{6}.
-1-\left(\frac{1}{4}+\frac{-12+5}{6}-\left(\frac{1}{3}-1\right)-\frac{1}{6}\right)-\frac{1}{3}
Tā te mea he rite te tauraro o -\frac{12}{6} me \frac{5}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-1-\left(\frac{1}{4}+-\frac{7}{6}-\left(\frac{1}{3}-1\right)-\frac{1}{6}\right)-\frac{1}{3}
Tāpirihia te -12 ki te 5, ka -7.
-1-\left(\frac{1}{4}+-\frac{7}{6}-\left(\frac{1}{3}-\frac{3}{3}\right)-\frac{1}{6}\right)-\frac{1}{3}
Me tahuri te 1 ki te hautau \frac{3}{3}.
-1-\left(\frac{1}{4}-\frac{7}{6}-\frac{1-3}{3}-\frac{1}{6}\right)-\frac{1}{3}
Tā te mea he rite te tauraro o \frac{1}{3} me \frac{3}{3}, me tango rāua mā te tango i ō raua taurunga.
-1-\left(\frac{1}{4}+-\frac{7}{6}-\left(-\frac{2}{3}\right)-\frac{1}{6}\right)-\frac{1}{3}
Tangohia te 3 i te 1, ka -2.
-1-\left(\frac{1}{4}-\frac{7}{6}+\frac{2}{3}-\frac{1}{6}\right)-\frac{1}{3}
Ko te tauaro o -\frac{2}{3} ko \frac{2}{3}.
-1-\left(\frac{1}{4}-\frac{7}{6}+\frac{4}{6}-\frac{1}{6}\right)-\frac{1}{3}
Ko te maha noa iti rawa atu o 6 me 3 ko 6. Me tahuri -\frac{7}{6} me \frac{2}{3} ki te hautau me te tautūnga 6.
-1-\left(\frac{1}{4}+\frac{-7+4}{6}-\frac{1}{6}\right)-\frac{1}{3}
Tā te mea he rite te tauraro o -\frac{7}{6} me \frac{4}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-1-\left(\frac{1}{4}+\frac{-3}{6}-\frac{1}{6}\right)-\frac{1}{3}
Tāpirihia te -7 ki te 4, ka -3.
-1-\left(\frac{1}{4}-\frac{1}{2}-\frac{1}{6}\right)-\frac{1}{3}
Whakahekea te hautanga \frac{-3}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
-1-\left(\frac{1}{4}-\frac{2}{4}-\frac{1}{6}\right)-\frac{1}{3}
Ko te maha noa iti rawa atu o 4 me 2 ko 4. Me tahuri \frac{1}{4} me \frac{1}{2} ki te hautau me te tautūnga 4.
-1-\left(\frac{1-2}{4}-\frac{1}{6}\right)-\frac{1}{3}
Tā te mea he rite te tauraro o \frac{1}{4} me \frac{2}{4}, me tango rāua mā te tango i ō raua taurunga.
-1-\left(-\frac{1}{4}-\frac{1}{6}\right)-\frac{1}{3}
Tangohia te 2 i te 1, ka -1.
-1-\left(-\frac{3}{12}-\frac{2}{12}\right)-\frac{1}{3}
Ko te maha noa iti rawa atu o 4 me 6 ko 12. Me tahuri -\frac{1}{4} me \frac{1}{6} ki te hautau me te tautūnga 12.
-1-\frac{-3-2}{12}-\frac{1}{3}
Tā te mea he rite te tauraro o -\frac{3}{12} me \frac{2}{12}, me tango rāua mā te tango i ō raua taurunga.
-1-\left(-\frac{5}{12}\right)-\frac{1}{3}
Tangohia te 2 i te -3, ka -5.
-1+\frac{5}{12}-\frac{1}{3}
Ko te tauaro o -\frac{5}{12} ko \frac{5}{12}.
-\frac{12}{12}+\frac{5}{12}-\frac{1}{3}
Me tahuri te -1 ki te hautau -\frac{12}{12}.
\frac{-12+5}{12}-\frac{1}{3}
Tā te mea he rite te tauraro o -\frac{12}{12} me \frac{5}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{7}{12}-\frac{1}{3}
Tāpirihia te -12 ki te 5, ka -7.
-\frac{7}{12}-\frac{4}{12}
Ko te maha noa iti rawa atu o 12 me 3 ko 12. Me tahuri -\frac{7}{12} me \frac{1}{3} ki te hautau me te tautūnga 12.
\frac{-7-4}{12}
Tā te mea he rite te tauraro o -\frac{7}{12} me \frac{4}{12}, me tango rāua mā te tango i ō raua taurunga.
-\frac{11}{12}
Tangohia te 4 i te -7, ka -11.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}