Aromātai
-2
Tauwehe
-2
Pātaitai
Arithmetic
- 1 \frac { 5 } { 11 } - \frac { 1 } { 4 } : ( \frac { 5 } { 6 } - \frac { 3 } { 8 } )
Tohaina
Kua tāruatia ki te papatopenga
-\frac{11+5}{11}-\frac{\frac{1}{4}}{\frac{5}{6}-\frac{3}{8}}
Whakareatia te 1 ki te 11, ka 11.
-\frac{16}{11}-\frac{\frac{1}{4}}{\frac{5}{6}-\frac{3}{8}}
Tāpirihia te 11 ki te 5, ka 16.
-\frac{16}{11}-\frac{\frac{1}{4}}{\frac{20}{24}-\frac{9}{24}}
Ko te maha noa iti rawa atu o 6 me 8 ko 24. Me tahuri \frac{5}{6} me \frac{3}{8} ki te hautau me te tautūnga 24.
-\frac{16}{11}-\frac{\frac{1}{4}}{\frac{20-9}{24}}
Tā te mea he rite te tauraro o \frac{20}{24} me \frac{9}{24}, me tango rāua mā te tango i ō raua taurunga.
-\frac{16}{11}-\frac{\frac{1}{4}}{\frac{11}{24}}
Tangohia te 9 i te 20, ka 11.
-\frac{16}{11}-\frac{1}{4}\times \frac{24}{11}
Whakawehe \frac{1}{4} ki te \frac{11}{24} mā te whakarea \frac{1}{4} ki te tau huripoki o \frac{11}{24}.
-\frac{16}{11}-\frac{1\times 24}{4\times 11}
Me whakarea te \frac{1}{4} ki te \frac{24}{11} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
-\frac{16}{11}-\frac{24}{44}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 24}{4\times 11}.
-\frac{16}{11}-\frac{6}{11}
Whakahekea te hautanga \frac{24}{44} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{-16-6}{11}
Tā te mea he rite te tauraro o -\frac{16}{11} me \frac{6}{11}, me tango rāua mā te tango i ō raua taurunga.
\frac{-22}{11}
Tangohia te 6 i te -16, ka -22.
-2
Whakawehea te -22 ki te 11, kia riro ko -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}