Aromātai
\frac{2}{9}\approx 0.222222222
Tauwehe
\frac{2}{3 ^ {2}} = 0.2222222222222222
Tohaina
Kua tāruatia ki te papatopenga
\frac{-\frac{21+4}{21}}{-\frac{1\times 14+1}{14}}\times \frac{1}{2}-\frac{1}{3}
Whakareatia te 1 ki te 21, ka 21.
\frac{-\frac{25}{21}}{-\frac{1\times 14+1}{14}}\times \frac{1}{2}-\frac{1}{3}
Tāpirihia te 21 ki te 4, ka 25.
\frac{-\frac{25}{21}}{-\frac{14+1}{14}}\times \frac{1}{2}-\frac{1}{3}
Whakareatia te 1 ki te 14, ka 14.
\frac{-\frac{25}{21}}{-\frac{15}{14}}\times \frac{1}{2}-\frac{1}{3}
Tāpirihia te 14 ki te 1, ka 15.
-\frac{25}{21}\left(-\frac{14}{15}\right)\times \frac{1}{2}-\frac{1}{3}
Whakawehe -\frac{25}{21} ki te -\frac{15}{14} mā te whakarea -\frac{25}{21} ki te tau huripoki o -\frac{15}{14}.
\frac{-25\left(-14\right)}{21\times 15}\times \frac{1}{2}-\frac{1}{3}
Me whakarea te -\frac{25}{21} ki te -\frac{14}{15} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{350}{315}\times \frac{1}{2}-\frac{1}{3}
Mahia ngā whakarea i roto i te hautanga \frac{-25\left(-14\right)}{21\times 15}.
\frac{10}{9}\times \frac{1}{2}-\frac{1}{3}
Whakahekea te hautanga \frac{350}{315} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 35.
\frac{10\times 1}{9\times 2}-\frac{1}{3}
Me whakarea te \frac{10}{9} ki te \frac{1}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{10}{18}-\frac{1}{3}
Mahia ngā whakarea i roto i te hautanga \frac{10\times 1}{9\times 2}.
\frac{5}{9}-\frac{1}{3}
Whakahekea te hautanga \frac{10}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{5}{9}-\frac{3}{9}
Ko te maha noa iti rawa atu o 9 me 3 ko 9. Me tahuri \frac{5}{9} me \frac{1}{3} ki te hautau me te tautūnga 9.
\frac{5-3}{9}
Tā te mea he rite te tauraro o \frac{5}{9} me \frac{3}{9}, me tango rāua mā te tango i ō raua taurunga.
\frac{2}{9}
Tangohia te 3 i te 5, ka 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}