- 1 \frac { 1 } { 2 } = \frac { 3 } { 4 } \times ( - 02 ) \times ( \frac { 3 } { 4 } \div 14 \times ( - \frac { 3 } { 5 } )
Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
-70\left(2+1\right)=\frac{15}{2}\left(-2\right)\times \frac{3}{4}\left(-\frac{3}{5}\right)
Me whakarea ngā taha e rua o te whārite ki te 140, arā, te tauraro pātahi he tino iti rawa te kitea o 2,4,14,5.
-70\times 3=\frac{15}{2}\left(-2\right)\times \frac{3}{4}\left(-\frac{3}{5}\right)
Tāpirihia te 2 ki te 1, ka 3.
-210=\frac{15}{2}\left(-2\right)\times \frac{3}{4}\left(-\frac{3}{5}\right)
Whakareatia te -70 ki te 3, ka -210.
-210=\frac{15\left(-2\right)}{2}\times \frac{3}{4}\left(-\frac{3}{5}\right)
Tuhia te \frac{15}{2}\left(-2\right) hei hautanga kotahi.
-210=\frac{-30}{2}\times \frac{3}{4}\left(-\frac{3}{5}\right)
Whakareatia te 15 ki te -2, ka -30.
-210=-15\times \frac{3}{4}\left(-\frac{3}{5}\right)
Whakawehea te -30 ki te 2, kia riro ko -15.
-210=\frac{-15\times 3}{4}\left(-\frac{3}{5}\right)
Tuhia te -15\times \frac{3}{4} hei hautanga kotahi.
-210=\frac{-45}{4}\left(-\frac{3}{5}\right)
Whakareatia te -15 ki te 3, ka -45.
-210=-\frac{45}{4}\left(-\frac{3}{5}\right)
Ka taea te hautanga \frac{-45}{4} te tuhi anō ko -\frac{45}{4} mā te tango i te tohu tōraro.
-210=\frac{-45\left(-3\right)}{4\times 5}
Me whakarea te -\frac{45}{4} ki te -\frac{3}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
-210=\frac{135}{20}
Mahia ngā whakarea i roto i te hautanga \frac{-45\left(-3\right)}{4\times 5}.
-210=\frac{27}{4}
Whakahekea te hautanga \frac{135}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
-\frac{840}{4}=\frac{27}{4}
Me tahuri te -210 ki te hautau -\frac{840}{4}.
\text{false}
Whakatauritea te -\frac{840}{4} me te \frac{27}{4}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}