Aromātai
-\frac{29}{33}\approx -0.878787879
Tauwehe
-\frac{29}{33} = -0.8787878787878788
Tohaina
Kua tāruatia ki te papatopenga
-1-\frac{\left(1-0.5\right)\times \frac{2^{3}}{3}}{-2-\left(-3\right)^{2}}
Tātaihia te 1 mā te pū o 4, kia riro ko 1.
-1-\frac{0.5\times \frac{2^{3}}{3}}{-2-\left(-3\right)^{2}}
Tangohia te 0.5 i te 1, ka 0.5.
-1-\frac{0.5\times \frac{8}{3}}{-2-\left(-3\right)^{2}}
Tātaihia te 2 mā te pū o 3, kia riro ko 8.
-1-\frac{\frac{1}{2}\times \frac{8}{3}}{-2-\left(-3\right)^{2}}
Me tahuri ki tau ā-ira 0.5 ki te hautau \frac{5}{10}. Whakahekea te hautanga \frac{5}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
-1-\frac{\frac{1\times 8}{2\times 3}}{-2-\left(-3\right)^{2}}
Me whakarea te \frac{1}{2} ki te \frac{8}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
-1-\frac{\frac{8}{6}}{-2-\left(-3\right)^{2}}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 8}{2\times 3}.
-1-\frac{\frac{4}{3}}{-2-\left(-3\right)^{2}}
Whakahekea te hautanga \frac{8}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
-1-\frac{\frac{4}{3}}{-2-9}
Tātaihia te -3 mā te pū o 2, kia riro ko 9.
-1-\frac{\frac{4}{3}}{-11}
Tangohia te 9 i te -2, ka -11.
-1-\frac{4}{3\left(-11\right)}
Tuhia te \frac{\frac{4}{3}}{-11} hei hautanga kotahi.
-1-\frac{4}{-33}
Whakareatia te 3 ki te -11, ka -33.
-1-\left(-\frac{4}{33}\right)
Ka taea te hautanga \frac{4}{-33} te tuhi anō ko -\frac{4}{33} mā te tango i te tohu tōraro.
-1+\frac{4}{33}
Ko te tauaro o -\frac{4}{33} ko \frac{4}{33}.
-\frac{33}{33}+\frac{4}{33}
Me tahuri te -1 ki te hautau -\frac{33}{33}.
\frac{-33+4}{33}
Tā te mea he rite te tauraro o -\frac{33}{33} me \frac{4}{33}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{29}{33}
Tāpirihia te -33 ki te 4, ka -29.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}