Aromātai
\frac{13}{28}\approx 0.464285714
Tauwehe
\frac{13}{2 ^ {2} \cdot 7} = 0.4642857142857143
Tohaina
Kua tāruatia ki te papatopenga
-\left(-\frac{1}{2}\right)^{2}+\frac{\frac{3}{4}-\frac{1}{2}-\frac{7}{8}}{-\frac{7}{8}}
Tātaihia te 1 mā te pū o 4, kia riro ko 1.
-\frac{1}{4}+\frac{\frac{3}{4}-\frac{1}{2}-\frac{7}{8}}{-\frac{7}{8}}
Tātaihia te -\frac{1}{2} mā te pū o 2, kia riro ko \frac{1}{4}.
-\frac{1}{4}+\frac{\frac{3}{4}-\frac{2}{4}-\frac{7}{8}}{-\frac{7}{8}}
Ko te maha noa iti rawa atu o 4 me 2 ko 4. Me tahuri \frac{3}{4} me \frac{1}{2} ki te hautau me te tautūnga 4.
-\frac{1}{4}+\frac{\frac{3-2}{4}-\frac{7}{8}}{-\frac{7}{8}}
Tā te mea he rite te tauraro o \frac{3}{4} me \frac{2}{4}, me tango rāua mā te tango i ō raua taurunga.
-\frac{1}{4}+\frac{\frac{1}{4}-\frac{7}{8}}{-\frac{7}{8}}
Tangohia te 2 i te 3, ka 1.
-\frac{1}{4}+\frac{\frac{2}{8}-\frac{7}{8}}{-\frac{7}{8}}
Ko te maha noa iti rawa atu o 4 me 8 ko 8. Me tahuri \frac{1}{4} me \frac{7}{8} ki te hautau me te tautūnga 8.
-\frac{1}{4}+\frac{\frac{2-7}{8}}{-\frac{7}{8}}
Tā te mea he rite te tauraro o \frac{2}{8} me \frac{7}{8}, me tango rāua mā te tango i ō raua taurunga.
-\frac{1}{4}+\frac{-\frac{5}{8}}{-\frac{7}{8}}
Tangohia te 7 i te 2, ka -5.
-\frac{1}{4}-\frac{5}{8}\left(-\frac{8}{7}\right)
Whakawehe -\frac{5}{8} ki te -\frac{7}{8} mā te whakarea -\frac{5}{8} ki te tau huripoki o -\frac{7}{8}.
-\frac{1}{4}+\frac{-5\left(-8\right)}{8\times 7}
Me whakarea te -\frac{5}{8} ki te -\frac{8}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
-\frac{1}{4}+\frac{40}{56}
Mahia ngā whakarea i roto i te hautanga \frac{-5\left(-8\right)}{8\times 7}.
-\frac{1}{4}+\frac{5}{7}
Whakahekea te hautanga \frac{40}{56} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
-\frac{7}{28}+\frac{20}{28}
Ko te maha noa iti rawa atu o 4 me 7 ko 28. Me tahuri -\frac{1}{4} me \frac{5}{7} ki te hautau me te tautūnga 28.
\frac{-7+20}{28}
Tā te mea he rite te tauraro o -\frac{7}{28} me \frac{20}{28}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{13}{28}
Tāpirihia te -7 ki te 20, ka 13.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}