Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-2x=-1
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}-2x+1=0
Me tāpiri te 1 ki ngā taha e rua.
a+b=-2 ab=1
Hei whakaoti i te whārite, whakatauwehea te x^{2}-2x+1 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-1 b=-1
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x-1\right)\left(x-1\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
\left(x-1\right)^{2}
Tuhia anōtia hei pūrua huarua.
x=1
Hei kimi i te otinga whārite, whakaotia te x-1=0.
x^{2}-2x=-1
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}-2x+1=0
Me tāpiri te 1 ki ngā taha e rua.
a+b=-2 ab=1\times 1=1
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-1 b=-1
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x^{2}-x\right)+\left(-x+1\right)
Tuhia anō te x^{2}-2x+1 hei \left(x^{2}-x\right)+\left(-x+1\right).
x\left(x-1\right)-\left(x-1\right)
Tauwehea te x i te tuatahi me te -1 i te rōpū tuarua.
\left(x-1\right)\left(x-1\right)
Whakatauwehea atu te kīanga pātahi x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(x-1\right)^{2}
Tuhia anōtia hei pūrua huarua.
x=1
Hei kimi i te otinga whārite, whakaotia te x-1=0.
x^{2}-2x=-1
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}-2x+1=0
Me tāpiri te 1 ki ngā taha e rua.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -2 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4}}{2}
Pūrua -2.
x=\frac{-\left(-2\right)±\sqrt{0}}{2}
Tāpiri 4 ki te -4.
x=-\frac{-2}{2}
Tuhia te pūtakerua o te 0.
x=\frac{2}{2}
Ko te tauaro o -2 ko 2.
x=1
Whakawehe 2 ki te 2.
x^{2}-2x=-1
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}-2x+1=-1+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-2x+1=0
Tāpiri -1 ki te 1.
\left(x-1\right)^{2}=0
Tauwehea x^{2}-2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=0 x-1=0
Whakarūnātia.
x=1 x=1
Me tāpiri 1 ki ngā taha e rua o te whārite.
x=1
Kua oti te whārite te whakatau. He ōrite ngā whakatau.