Tauwehe
\left(d-1\right)\left(2d+1\right)
Aromātai
\left(d-1\right)\left(2d+1\right)
Tohaina
Kua tāruatia ki te papatopenga
2d^{2}-d-1
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-1 ab=2\left(-1\right)=-2
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 2d^{2}+ad+bd-1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-2 b=1
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Ko te takirua anake pērā ko te otinga pūnaha.
\left(2d^{2}-2d\right)+\left(d-1\right)
Tuhia anō te 2d^{2}-d-1 hei \left(2d^{2}-2d\right)+\left(d-1\right).
2d\left(d-1\right)+d-1
Whakatauwehea atu 2d i te 2d^{2}-2d.
\left(d-1\right)\left(2d+1\right)
Whakatauwehea atu te kīanga pātahi d-1 mā te whakamahi i te āhuatanga tātai tohatoha.
2d^{2}-d-1=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
d=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-1\right)}}{2\times 2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
d=\frac{-\left(-1\right)±\sqrt{1-8\left(-1\right)}}{2\times 2}
Whakareatia -4 ki te 2.
d=\frac{-\left(-1\right)±\sqrt{1+8}}{2\times 2}
Whakareatia -8 ki te -1.
d=\frac{-\left(-1\right)±\sqrt{9}}{2\times 2}
Tāpiri 1 ki te 8.
d=\frac{-\left(-1\right)±3}{2\times 2}
Tuhia te pūtakerua o te 9.
d=\frac{1±3}{2\times 2}
Ko te tauaro o -1 ko 1.
d=\frac{1±3}{4}
Whakareatia 2 ki te 2.
d=\frac{4}{4}
Nā, me whakaoti te whārite d=\frac{1±3}{4} ina he tāpiri te ±. Tāpiri 1 ki te 3.
d=1
Whakawehe 4 ki te 4.
d=-\frac{2}{4}
Nā, me whakaoti te whārite d=\frac{1±3}{4} ina he tango te ±. Tango 3 mai i 1.
d=-\frac{1}{2}
Whakahekea te hautanga \frac{-2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
2d^{2}-d-1=2\left(d-1\right)\left(d-\left(-\frac{1}{2}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 1 mō te x_{1} me te -\frac{1}{2} mō te x_{2}.
2d^{2}-d-1=2\left(d-1\right)\left(d+\frac{1}{2}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
2d^{2}-d-1=2\left(d-1\right)\times \frac{2d+1}{2}
Tāpiri \frac{1}{2} ki te d mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
2d^{2}-d-1=\left(d-1\right)\left(2d+1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 2 me te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}