Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-x+1+x^{2}-2x+1>0
Hei kimi i te tauaro o x-1, kimihia te tauaro o ia taurangi.
-3x+1+x^{2}+1>0
Pahekotia te -x me -2x, ka -3x.
-3x+2+x^{2}>0
Tāpirihia te 1 ki te 1, ka 2.
-3x+2+x^{2}=0
Kia whakaotia te koreōrite, me tauwehe te taha mauī. Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 1\times 2}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -3 mō te b, me te 2 mō te c i te ture pūrua.
x=\frac{3±1}{2}
Mahia ngā tātaitai.
x=2 x=1
Whakaotia te whārite x=\frac{3±1}{2} ina he tōrunga te ±, ina he tōraro te ±.
\left(x-2\right)\left(x-1\right)>0
Tuhia anō te koreōrite mā te whakamahi i ngā otinga i whiwhi.
x-2<0 x-1<0
Kia tōrunga te otinga, me tōraro tahi te x-2 me te x-1, me tōrunga tahi rānei. Whakaarohia te tauira ina he tōraro tahi te x-2 me te x-1.
x<1
Te otinga e whakaea i ngā koreōrite e rua ko x<1.
x-1>0 x-2>0
Whakaarohia te tauira ina he tōrunga tahi te x-2 me te x-1.
x>2
Te otinga e whakaea i ngā koreōrite e rua ko x>2.
x<1\text{; }x>2
Ko te otinga whakamutunga ko te whakakotahi i ngā otinga kua whiwhi.