Whakaoti mō x
x\in \left(-\infty,-2\right)\cup \left(5,\infty\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(-x-2\right)\left(x-5\right)<0
Hei kimi i te tauaro o x+2, kimihia te tauaro o ia taurangi.
-x^{2}+5x-2x+10<0
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o -x-2 ki ia tau o x-5.
-x^{2}+3x+10<0
Pahekotia te 5x me -2x, ka 3x.
x^{2}-3x-10>0
Me whakarea te koreōrite ki te -1 kia tōrunga ai te tau whakarea o te pū tino teitei i -x^{2}+3x+10. I te mea he tōraro a -1, ka huri te ahunga koreōrite.
x^{2}-3x-10=0
Kia whakaotia te koreōrite, me tauwehe te taha mauī. Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 1\left(-10\right)}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -3 mō te b, me te -10 mō te c i te ture pūrua.
x=\frac{3±7}{2}
Mahia ngā tātaitai.
x=5 x=-2
Whakaotia te whārite x=\frac{3±7}{2} ina he tōrunga te ±, ina he tōraro te ±.
\left(x-5\right)\left(x+2\right)>0
Tuhia anō te koreōrite mā te whakamahi i ngā otinga i whiwhi.
x-5<0 x+2<0
Kia tōrunga te otinga, me tōraro tahi te x-5 me te x+2, me tōrunga tahi rānei. Whakaarohia te tauira ina he tōraro tahi te x-5 me te x+2.
x<-2
Te otinga e whakaea i ngā koreōrite e rua ko x<-2.
x+2>0 x-5>0
Whakaarohia te tauira ina he tōrunga tahi te x-5 me te x+2.
x>5
Te otinga e whakaea i ngā koreōrite e rua ko x>5.
x<-2\text{; }x>5
Ko te otinga whakamutunga ko te whakakotahi i ngā otinga kua whiwhi.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}