Whakaoti mō x (complex solution)
x=\frac{-\sqrt{39}i-3}{2}\approx -1.5-3.122498999i
x=\frac{-3+\sqrt{39}i}{2}\approx -1.5+3.122498999i
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(-x-1\right)\left(x+4\right)-x+3x=8
Hei kimi i te tauaro o x+1, kimihia te tauaro o ia taurangi.
-x^{2}-4x-x-4-x+3x=8
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o -x-1 ki ia tau o x+4.
-x^{2}-5x-4-x+3x=8
Pahekotia te -4x me -x, ka -5x.
-x^{2}-6x-4+3x=8
Pahekotia te -5x me -x, ka -6x.
-x^{2}-3x-4=8
Pahekotia te -6x me 3x, ka -3x.
-x^{2}-3x-4-8=0
Tangohia te 8 mai i ngā taha e rua.
-x^{2}-3x-12=0
Tangohia te 8 i te -4, ka -12.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-1\right)\left(-12\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -3 mō b, me -12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-1\right)\left(-12\right)}}{2\left(-1\right)}
Pūrua -3.
x=\frac{-\left(-3\right)±\sqrt{9+4\left(-12\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-\left(-3\right)±\sqrt{9-48}}{2\left(-1\right)}
Whakareatia 4 ki te -12.
x=\frac{-\left(-3\right)±\sqrt{-39}}{2\left(-1\right)}
Tāpiri 9 ki te -48.
x=\frac{-\left(-3\right)±\sqrt{39}i}{2\left(-1\right)}
Tuhia te pūtakerua o te -39.
x=\frac{3±\sqrt{39}i}{2\left(-1\right)}
Ko te tauaro o -3 ko 3.
x=\frac{3±\sqrt{39}i}{-2}
Whakareatia 2 ki te -1.
x=\frac{3+\sqrt{39}i}{-2}
Nā, me whakaoti te whārite x=\frac{3±\sqrt{39}i}{-2} ina he tāpiri te ±. Tāpiri 3 ki te i\sqrt{39}.
x=\frac{-\sqrt{39}i-3}{2}
Whakawehe 3+i\sqrt{39} ki te -2.
x=\frac{-\sqrt{39}i+3}{-2}
Nā, me whakaoti te whārite x=\frac{3±\sqrt{39}i}{-2} ina he tango te ±. Tango i\sqrt{39} mai i 3.
x=\frac{-3+\sqrt{39}i}{2}
Whakawehe 3-i\sqrt{39} ki te -2.
x=\frac{-\sqrt{39}i-3}{2} x=\frac{-3+\sqrt{39}i}{2}
Kua oti te whārite te whakatau.
\left(-x-1\right)\left(x+4\right)-x+3x=8
Hei kimi i te tauaro o x+1, kimihia te tauaro o ia taurangi.
-x^{2}-4x-x-4-x+3x=8
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o -x-1 ki ia tau o x+4.
-x^{2}-5x-4-x+3x=8
Pahekotia te -4x me -x, ka -5x.
-x^{2}-6x-4+3x=8
Pahekotia te -5x me -x, ka -6x.
-x^{2}-3x-4=8
Pahekotia te -6x me 3x, ka -3x.
-x^{2}-3x=8+4
Me tāpiri te 4 ki ngā taha e rua.
-x^{2}-3x=12
Tāpirihia te 8 ki te 4, ka 12.
\frac{-x^{2}-3x}{-1}=\frac{12}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\left(-\frac{3}{-1}\right)x=\frac{12}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}+3x=\frac{12}{-1}
Whakawehe -3 ki te -1.
x^{2}+3x=-12
Whakawehe 12 ki te -1.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-12+\left(\frac{3}{2}\right)^{2}
Whakawehea te 3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{2}. Nā, tāpiria te pūrua o te \frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+3x+\frac{9}{4}=-12+\frac{9}{4}
Pūruatia \frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+3x+\frac{9}{4}=-\frac{39}{4}
Tāpiri -12 ki te \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=-\frac{39}{4}
Tauwehea x^{2}+3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{-\frac{39}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{2}=\frac{\sqrt{39}i}{2} x+\frac{3}{2}=-\frac{\sqrt{39}i}{2}
Whakarūnātia.
x=\frac{-3+\sqrt{39}i}{2} x=\frac{-\sqrt{39}i-3}{2}
Me tango \frac{3}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}