Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Tohaina

\frac{-4}{\sqrt{16-4}}\times 2
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
\frac{-4}{\sqrt{12}}\times 2
Tangohia te 4 i te 16, ka 12.
\frac{-4}{2\sqrt{3}}\times 2
Tauwehea te 12=2^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 3} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{3}. Tuhia te pūtakerua o te 2^{2}.
\frac{-4\sqrt{3}}{2\left(\sqrt{3}\right)^{2}}\times 2
Whakangāwaritia te tauraro o \frac{-4}{2\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{-4\sqrt{3}}{2\times 3}\times 2
Ko te pūrua o \sqrt{3} ko 3.
\frac{-2\sqrt{3}}{3}\times 2
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{-2\sqrt{3}\times 2}{3}
Tuhia te \frac{-2\sqrt{3}}{3}\times 2 hei hautanga kotahi.
\frac{-4\sqrt{3}}{3}
Whakareatia te -2 ki te 2, ka -4.