Aromātai
-2a\left(a+1\right)
Whakaroha
-2a^{2}-2a
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
- ( 3 a ^ { 2 } - 4 a b ) + [ a ^ { 2 } - 2 ( 1 a + 2 a b ) ]
Tohaina
Kua tāruatia ki te papatopenga
-3a^{2}+4ab+a^{2}-2\left(a+2ab\right)
Hei kimi i te tauaro o 3a^{2}-4ab, kimihia te tauaro o ia taurangi.
-2a^{2}+4ab-2\left(a+2ab\right)
Pahekotia te -3a^{2} me a^{2}, ka -2a^{2}.
-2a^{2}+4ab-2a-4ab
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te 1a+2ab.
-2a^{2}-2a
Pahekotia te 4ab me -4ab, ka 0.
-3a^{2}+4ab+a^{2}-2\left(a+2ab\right)
Hei kimi i te tauaro o 3a^{2}-4ab, kimihia te tauaro o ia taurangi.
-2a^{2}+4ab-2\left(a+2ab\right)
Pahekotia te -3a^{2} me a^{2}, ka -2a^{2}.
-2a^{2}+4ab-2a-4ab
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te 1a+2ab.
-2a^{2}-2a
Pahekotia te 4ab me -4ab, ka 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}