Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-3\times \frac{\sqrt{3}\sqrt{3}\sqrt{4}}{\sqrt{2}}
Tauwehea te 12=3\times 4. Tuhia anō te pūtake rua o te hua \sqrt{3\times 4} hei hua o ngā pūtake rua \sqrt{3}\sqrt{4}.
-3\times \frac{3\sqrt{4}}{\sqrt{2}}
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
-3\times \frac{3\times 2}{\sqrt{2}}
Tātaitia te pūtakerua o 4 kia tae ki 2.
-3\times \frac{6}{\sqrt{2}}
Whakareatia te 3 ki te 2, ka 6.
-3\times \frac{6\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{6}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
-3\times \frac{6\sqrt{2}}{2}
Ko te pūrua o \sqrt{2} ko 2.
-3\times 3\sqrt{2}
Whakawehea te 6\sqrt{2} ki te 2, kia riro ko 3\sqrt{2}.
-9\sqrt{2}
Whakareatia te -3 ki te 3, ka -9.