Whakaoti mō t
t=-0.5
Tohaina
Kua tāruatia ki te papatopenga
-2t-\left(-0.71\right)=0.9\left(1.4-t\right)
Hei kimi i te tauaro o 2t-0.71, kimihia te tauaro o ia taurangi.
-2t+0.71=0.9\left(1.4-t\right)
Ko te tauaro o -0.71 ko 0.71.
-2t+0.71=1.26-0.9t
Whakamahia te āhuatanga tohatoha hei whakarea te 0.9 ki te 1.4-t.
-2t+0.71+0.9t=1.26
Me tāpiri te 0.9t ki ngā taha e rua.
-1.1t+0.71=1.26
Pahekotia te -2t me 0.9t, ka -1.1t.
-1.1t=1.26-0.71
Tangohia te 0.71 mai i ngā taha e rua.
-1.1t=0.55
Tangohia te 0.71 i te 1.26, ka 0.55.
t=\frac{0.55}{-1.1}
Whakawehea ngā taha e rua ki te -1.1.
t=\frac{55}{-110}
Whakarohaina te \frac{0.55}{-1.1} mā te whakarea i te taurunga me te tauraro ki te 100.
t=-\frac{1}{2}
Whakahekea te hautanga \frac{55}{-110} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 55.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}