Aromātai
13-35a
Whakaroha
13-35a
Tohaina
Kua tāruatia ki te papatopenga
-\left(0a+3\right)+3\left(8-15a\right)-4\left(-2.5a+2\right)
Whakareatia te 0 ki te 7, ka 0.
-\left(0+3\right)+3\left(8-15a\right)-4\left(-2.5a+2\right)
Ko te tau i whakarea ki te kore ka hua ko te kore.
-3+3\left(8-15a\right)-4\left(-2.5a+2\right)
Tāpirihia te 0 ki te 3, ka 3.
-3+24-45a-4\left(-2.5a+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 8-15a.
21-45a-4\left(-2.5a+2\right)
Tāpirihia te -3 ki te 24, ka 21.
21-45a+10a-8
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te -2.5a+2.
21-35a-8
Pahekotia te -45a me 10a, ka -35a.
13-35a
Tangohia te 8 i te 21, ka 13.
-\left(0a+3\right)+3\left(8-15a\right)-4\left(-2.5a+2\right)
Whakareatia te 0 ki te 7, ka 0.
-\left(0+3\right)+3\left(8-15a\right)-4\left(-2.5a+2\right)
Ko te tau i whakarea ki te kore ka hua ko te kore.
-3+3\left(8-15a\right)-4\left(-2.5a+2\right)
Tāpirihia te 0 ki te 3, ka 3.
-3+24-45a-4\left(-2.5a+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 8-15a.
21-45a-4\left(-2.5a+2\right)
Tāpirihia te -3 ki te 24, ka 21.
21-45a+10a-8
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te -2.5a+2.
21-35a-8
Pahekotia te -45a me 10a, ka -35a.
13-35a
Tangohia te 8 i te 21, ka 13.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}