- ( - 8 + 12 q ) = - 4 ( - 2 q
Whakaoti mō q
q=\frac{2}{5}=0.4
Tohaina
Kua tāruatia ki te papatopenga
-\left(-8\right)-12q=-4\left(-2\right)q
Hei kimi i te tauaro o -8+12q, kimihia te tauaro o ia taurangi.
8-12q=-4\left(-2\right)q
Ko te tauaro o -8 ko 8.
8-12q=8q
Whakareatia te -4 ki te -2, ka 8.
8-12q-8q=0
Tangohia te 8q mai i ngā taha e rua.
8-20q=0
Pahekotia te -12q me -8q, ka -20q.
-20q=-8
Tangohia te 8 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
q=\frac{-8}{-20}
Whakawehea ngā taha e rua ki te -20.
q=\frac{2}{5}
Whakahekea te hautanga \frac{-8}{-20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}