Aromātai
-\frac{1}{nm^{3}}
Whakaroha
-\frac{1}{nm^{3}}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(-\frac{m^{5}}{n^{5}}\right)\left(-\frac{n^{2}}{m}\right)^{4}}{\left(\left(-m\right)n\right)^{4}}
Kia whakarewa i te \frac{m}{n} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(-\frac{m^{5}}{n^{5}}\right)\left(-\frac{n^{2}}{m}\right)^{4}}{\left(-m\right)^{4}n^{4}}
Whakarohaina te \left(\left(-m\right)n\right)^{4}.
\frac{-\frac{m^{5}}{n^{5}}\left(-1\right)^{4}\times \left(\frac{n^{2}}{m}\right)^{4}}{\left(-m\right)^{4}n^{4}}
Whakarohaina te \left(-\frac{n^{2}}{m}\right)^{4}.
\frac{-\frac{m^{5}}{n^{5}}\times \left(\frac{n^{2}}{m}\right)^{4}}{\left(-m\right)^{4}n^{4}}
Tātaihia te -1 mā te pū o 4, kia riro ko 1.
\frac{-\frac{m^{5}}{n^{5}}\times \frac{\left(n^{2}\right)^{4}}{m^{4}}}{\left(-m\right)^{4}n^{4}}
Kia whakarewa i te \frac{n^{2}}{m} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{-\frac{m^{5}\left(n^{2}\right)^{4}}{n^{5}m^{4}}}{\left(-m\right)^{4}n^{4}}
Me whakarea te \frac{m^{5}}{n^{5}} ki te \frac{\left(n^{2}\right)^{4}}{m^{4}} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-\frac{m\left(n^{2}\right)^{4}}{n^{5}}}{\left(-m\right)^{4}n^{4}}
Me whakakore tahi te m^{4} i te taurunga me te tauraro.
\frac{-\frac{m\left(n^{2}\right)^{4}}{n^{5}}}{\left(-1\right)^{4}m^{4}n^{4}}
Whakarohaina te \left(-m\right)^{4}.
\frac{-\frac{m\left(n^{2}\right)^{4}}{n^{5}}}{1m^{4}n^{4}}
Tātaihia te -1 mā te pū o 4, kia riro ko 1.
\frac{-\frac{m\left(n^{2}\right)^{4}}{n^{5}}}{m^{4}n^{4}}
Me whakakore tahi te 1 i te taurunga me te tauraro.
\frac{-\frac{mn^{8}}{n^{5}}}{m^{4}n^{4}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 4 kia riro ai te 8.
\frac{-mn^{3}}{m^{4}n^{4}}
Me whakakore tahi te n^{5} i te taurunga me te tauraro.
\frac{-1}{nm^{3}}
Me whakakore tahi te mn^{3} i te taurunga me te tauraro.
\frac{\left(-\frac{m^{5}}{n^{5}}\right)\left(-\frac{n^{2}}{m}\right)^{4}}{\left(\left(-m\right)n\right)^{4}}
Kia whakarewa i te \frac{m}{n} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(-\frac{m^{5}}{n^{5}}\right)\left(-\frac{n^{2}}{m}\right)^{4}}{\left(-m\right)^{4}n^{4}}
Whakarohaina te \left(\left(-m\right)n\right)^{4}.
\frac{-\frac{m^{5}}{n^{5}}\left(-1\right)^{4}\times \left(\frac{n^{2}}{m}\right)^{4}}{\left(-m\right)^{4}n^{4}}
Whakarohaina te \left(-\frac{n^{2}}{m}\right)^{4}.
\frac{-\frac{m^{5}}{n^{5}}\times \left(\frac{n^{2}}{m}\right)^{4}}{\left(-m\right)^{4}n^{4}}
Tātaihia te -1 mā te pū o 4, kia riro ko 1.
\frac{-\frac{m^{5}}{n^{5}}\times \frac{\left(n^{2}\right)^{4}}{m^{4}}}{\left(-m\right)^{4}n^{4}}
Kia whakarewa i te \frac{n^{2}}{m} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{-\frac{m^{5}\left(n^{2}\right)^{4}}{n^{5}m^{4}}}{\left(-m\right)^{4}n^{4}}
Me whakarea te \frac{m^{5}}{n^{5}} ki te \frac{\left(n^{2}\right)^{4}}{m^{4}} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-\frac{m\left(n^{2}\right)^{4}}{n^{5}}}{\left(-m\right)^{4}n^{4}}
Me whakakore tahi te m^{4} i te taurunga me te tauraro.
\frac{-\frac{m\left(n^{2}\right)^{4}}{n^{5}}}{\left(-1\right)^{4}m^{4}n^{4}}
Whakarohaina te \left(-m\right)^{4}.
\frac{-\frac{m\left(n^{2}\right)^{4}}{n^{5}}}{1m^{4}n^{4}}
Tātaihia te -1 mā te pū o 4, kia riro ko 1.
\frac{-\frac{m\left(n^{2}\right)^{4}}{n^{5}}}{m^{4}n^{4}}
Me whakakore tahi te 1 i te taurunga me te tauraro.
\frac{-\frac{mn^{8}}{n^{5}}}{m^{4}n^{4}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 4 kia riro ai te 8.
\frac{-mn^{3}}{m^{4}n^{4}}
Me whakakore tahi te n^{5} i te taurunga me te tauraro.
\frac{-1}{nm^{3}}
Me whakakore tahi te mn^{3} i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}