Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(-\frac{m^{5}}{n^{5}}\right)\left(-\frac{n^{2}}{m}\right)^{4}}{\left(\left(-m\right)n\right)^{4}}
Kia whakarewa i te \frac{m}{n} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(-\frac{m^{5}}{n^{5}}\right)\left(-\frac{n^{2}}{m}\right)^{4}}{\left(-m\right)^{4}n^{4}}
Whakarohaina te \left(\left(-m\right)n\right)^{4}.
\frac{-\frac{m^{5}}{n^{5}}\left(-1\right)^{4}\times \left(\frac{n^{2}}{m}\right)^{4}}{\left(-m\right)^{4}n^{4}}
Whakarohaina te \left(-\frac{n^{2}}{m}\right)^{4}.
\frac{-\frac{m^{5}}{n^{5}}\times \left(\frac{n^{2}}{m}\right)^{4}}{\left(-m\right)^{4}n^{4}}
Tātaihia te -1 mā te pū o 4, kia riro ko 1.
\frac{-\frac{m^{5}}{n^{5}}\times \frac{\left(n^{2}\right)^{4}}{m^{4}}}{\left(-m\right)^{4}n^{4}}
Kia whakarewa i te \frac{n^{2}}{m} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{-\frac{m^{5}\left(n^{2}\right)^{4}}{n^{5}m^{4}}}{\left(-m\right)^{4}n^{4}}
Me whakarea te \frac{m^{5}}{n^{5}} ki te \frac{\left(n^{2}\right)^{4}}{m^{4}} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-\frac{m\left(n^{2}\right)^{4}}{n^{5}}}{\left(-m\right)^{4}n^{4}}
Me whakakore tahi te m^{4} i te taurunga me te tauraro.
\frac{-\frac{m\left(n^{2}\right)^{4}}{n^{5}}}{\left(-1\right)^{4}m^{4}n^{4}}
Whakarohaina te \left(-m\right)^{4}.
\frac{-\frac{m\left(n^{2}\right)^{4}}{n^{5}}}{1m^{4}n^{4}}
Tātaihia te -1 mā te pū o 4, kia riro ko 1.
\frac{-\frac{m\left(n^{2}\right)^{4}}{n^{5}}}{m^{4}n^{4}}
Me whakakore tahi te 1 i te taurunga me te tauraro.
\frac{-\frac{mn^{8}}{n^{5}}}{m^{4}n^{4}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 4 kia riro ai te 8.
\frac{-mn^{3}}{m^{4}n^{4}}
Me whakakore tahi te n^{5} i te taurunga me te tauraro.
\frac{-1}{nm^{3}}
Me whakakore tahi te mn^{3} i te taurunga me te tauraro.
\frac{\left(-\frac{m^{5}}{n^{5}}\right)\left(-\frac{n^{2}}{m}\right)^{4}}{\left(\left(-m\right)n\right)^{4}}
Kia whakarewa i te \frac{m}{n} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(-\frac{m^{5}}{n^{5}}\right)\left(-\frac{n^{2}}{m}\right)^{4}}{\left(-m\right)^{4}n^{4}}
Whakarohaina te \left(\left(-m\right)n\right)^{4}.
\frac{-\frac{m^{5}}{n^{5}}\left(-1\right)^{4}\times \left(\frac{n^{2}}{m}\right)^{4}}{\left(-m\right)^{4}n^{4}}
Whakarohaina te \left(-\frac{n^{2}}{m}\right)^{4}.
\frac{-\frac{m^{5}}{n^{5}}\times \left(\frac{n^{2}}{m}\right)^{4}}{\left(-m\right)^{4}n^{4}}
Tātaihia te -1 mā te pū o 4, kia riro ko 1.
\frac{-\frac{m^{5}}{n^{5}}\times \frac{\left(n^{2}\right)^{4}}{m^{4}}}{\left(-m\right)^{4}n^{4}}
Kia whakarewa i te \frac{n^{2}}{m} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{-\frac{m^{5}\left(n^{2}\right)^{4}}{n^{5}m^{4}}}{\left(-m\right)^{4}n^{4}}
Me whakarea te \frac{m^{5}}{n^{5}} ki te \frac{\left(n^{2}\right)^{4}}{m^{4}} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-\frac{m\left(n^{2}\right)^{4}}{n^{5}}}{\left(-m\right)^{4}n^{4}}
Me whakakore tahi te m^{4} i te taurunga me te tauraro.
\frac{-\frac{m\left(n^{2}\right)^{4}}{n^{5}}}{\left(-1\right)^{4}m^{4}n^{4}}
Whakarohaina te \left(-m\right)^{4}.
\frac{-\frac{m\left(n^{2}\right)^{4}}{n^{5}}}{1m^{4}n^{4}}
Tātaihia te -1 mā te pū o 4, kia riro ko 1.
\frac{-\frac{m\left(n^{2}\right)^{4}}{n^{5}}}{m^{4}n^{4}}
Me whakakore tahi te 1 i te taurunga me te tauraro.
\frac{-\frac{mn^{8}}{n^{5}}}{m^{4}n^{4}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 4 kia riro ai te 8.
\frac{-mn^{3}}{m^{4}n^{4}}
Me whakakore tahi te n^{5} i te taurunga me te tauraro.
\frac{-1}{nm^{3}}
Me whakakore tahi te mn^{3} i te taurunga me te tauraro.