Aromātai
-\frac{3}{5}=-0.6
Tauwehe
-\frac{3}{5} = -0.6
Tohaina
Kua tāruatia ki te papatopenga
\left(-\frac{3\times 4}{2}\right)\times \frac{\frac{1}{6}}{\frac{1}{2}}\times \frac{3}{10}
Tuhia te \frac{3}{2}\times 4 hei hautanga kotahi.
\left(-\frac{12}{2}\right)\times \frac{\frac{1}{6}}{\frac{1}{2}}\times \frac{3}{10}
Whakareatia te 3 ki te 4, ka 12.
-6\times \frac{\frac{1}{6}}{\frac{1}{2}}\times \frac{3}{10}
Whakawehea te 12 ki te 2, kia riro ko 6.
-6\times \frac{1}{6}\times 2\times \frac{3}{10}
Whakawehe \frac{1}{6} ki te \frac{1}{2} mā te whakarea \frac{1}{6} ki te tau huripoki o \frac{1}{2}.
-6\times \frac{2}{6}\times \frac{3}{10}
Whakareatia te \frac{1}{6} ki te 2, ka \frac{2}{6}.
-6\times \frac{1}{3}\times \frac{3}{10}
Whakahekea te hautanga \frac{2}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{-6}{3}\times \frac{3}{10}
Whakareatia te -6 ki te \frac{1}{3}, ka \frac{-6}{3}.
-2\times \frac{3}{10}
Whakawehea te -6 ki te 3, kia riro ko -2.
\frac{-2\times 3}{10}
Tuhia te -2\times \frac{3}{10} hei hautanga kotahi.
\frac{-6}{10}
Whakareatia te -2 ki te 3, ka -6.
-\frac{3}{5}
Whakahekea te hautanga \frac{-6}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}