Whakaoti mō y
y=5\sqrt{17}+5\approx 25.615528128
y=5-5\sqrt{17}\approx -15.615528128
Graph
Tohaina
Kua tāruatia ki te papatopenga
-y^{2}+10y+400=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-10±\sqrt{10^{2}-4\left(-1\right)\times 400}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 10 mō b, me 400 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-10±\sqrt{100-4\left(-1\right)\times 400}}{2\left(-1\right)}
Pūrua 10.
y=\frac{-10±\sqrt{100+4\times 400}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
y=\frac{-10±\sqrt{100+1600}}{2\left(-1\right)}
Whakareatia 4 ki te 400.
y=\frac{-10±\sqrt{1700}}{2\left(-1\right)}
Tāpiri 100 ki te 1600.
y=\frac{-10±10\sqrt{17}}{2\left(-1\right)}
Tuhia te pūtakerua o te 1700.
y=\frac{-10±10\sqrt{17}}{-2}
Whakareatia 2 ki te -1.
y=\frac{10\sqrt{17}-10}{-2}
Nā, me whakaoti te whārite y=\frac{-10±10\sqrt{17}}{-2} ina he tāpiri te ±. Tāpiri -10 ki te 10\sqrt{17}.
y=5-5\sqrt{17}
Whakawehe -10+10\sqrt{17} ki te -2.
y=\frac{-10\sqrt{17}-10}{-2}
Nā, me whakaoti te whārite y=\frac{-10±10\sqrt{17}}{-2} ina he tango te ±. Tango 10\sqrt{17} mai i -10.
y=5\sqrt{17}+5
Whakawehe -10-10\sqrt{17} ki te -2.
y=5-5\sqrt{17} y=5\sqrt{17}+5
Kua oti te whārite te whakatau.
-y^{2}+10y+400=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-y^{2}+10y+400-400=-400
Me tango 400 mai i ngā taha e rua o te whārite.
-y^{2}+10y=-400
Mā te tango i te 400 i a ia ake anō ka toe ko te 0.
\frac{-y^{2}+10y}{-1}=-\frac{400}{-1}
Whakawehea ngā taha e rua ki te -1.
y^{2}+\frac{10}{-1}y=-\frac{400}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
y^{2}-10y=-\frac{400}{-1}
Whakawehe 10 ki te -1.
y^{2}-10y=400
Whakawehe -400 ki te -1.
y^{2}-10y+\left(-5\right)^{2}=400+\left(-5\right)^{2}
Whakawehea te -10, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -5. Nā, tāpiria te pūrua o te -5 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}-10y+25=400+25
Pūrua -5.
y^{2}-10y+25=425
Tāpiri 400 ki te 25.
\left(y-5\right)^{2}=425
Tauwehea y^{2}-10y+25. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-5\right)^{2}}=\sqrt{425}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y-5=5\sqrt{17} y-5=-5\sqrt{17}
Whakarūnātia.
y=5\sqrt{17}+5 y=5-5\sqrt{17}
Me tāpiri 5 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}