Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-x^{2}-8x+18=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-1\right)\times 18}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -8 mō b, me 18 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-1\right)\times 18}}{2\left(-1\right)}
Pūrua -8.
x=\frac{-\left(-8\right)±\sqrt{64+4\times 18}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-\left(-8\right)±\sqrt{64+72}}{2\left(-1\right)}
Whakareatia 4 ki te 18.
x=\frac{-\left(-8\right)±\sqrt{136}}{2\left(-1\right)}
Tāpiri 64 ki te 72.
x=\frac{-\left(-8\right)±2\sqrt{34}}{2\left(-1\right)}
Tuhia te pūtakerua o te 136.
x=\frac{8±2\sqrt{34}}{2\left(-1\right)}
Ko te tauaro o -8 ko 8.
x=\frac{8±2\sqrt{34}}{-2}
Whakareatia 2 ki te -1.
x=\frac{2\sqrt{34}+8}{-2}
Nā, me whakaoti te whārite x=\frac{8±2\sqrt{34}}{-2} ina he tāpiri te ±. Tāpiri 8 ki te 2\sqrt{34}.
x=-\left(\sqrt{34}+4\right)
Whakawehe 8+2\sqrt{34} ki te -2.
x=\frac{8-2\sqrt{34}}{-2}
Nā, me whakaoti te whārite x=\frac{8±2\sqrt{34}}{-2} ina he tango te ±. Tango 2\sqrt{34} mai i 8.
x=\sqrt{34}-4
Whakawehe 8-2\sqrt{34} ki te -2.
x=-\left(\sqrt{34}+4\right) x=\sqrt{34}-4
Kua oti te whārite te whakatau.
-x^{2}-8x+18=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-x^{2}-8x+18-18=-18
Me tango 18 mai i ngā taha e rua o te whārite.
-x^{2}-8x=-18
Mā te tango i te 18 i a ia ake anō ka toe ko te 0.
\frac{-x^{2}-8x}{-1}=-\frac{18}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\left(-\frac{8}{-1}\right)x=-\frac{18}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}+8x=-\frac{18}{-1}
Whakawehe -8 ki te -1.
x^{2}+8x=18
Whakawehe -18 ki te -1.
x^{2}+8x+4^{2}=18+4^{2}
Whakawehea te 8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 4. Nā, tāpiria te pūrua o te 4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+8x+16=18+16
Pūrua 4.
x^{2}+8x+16=34
Tāpiri 18 ki te 16.
\left(x+4\right)^{2}=34
Tauwehea x^{2}+8x+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{34}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+4=\sqrt{34} x+4=-\sqrt{34}
Whakarūnātia.
x=\sqrt{34}-4 x=-\sqrt{34}-4
Me tango 4 mai i ngā taha e rua o te whārite.
-x^{2}-8x+18=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-1\right)\times 18}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -8 mō b, me 18 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-1\right)\times 18}}{2\left(-1\right)}
Pūrua -8.
x=\frac{-\left(-8\right)±\sqrt{64+4\times 18}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-\left(-8\right)±\sqrt{64+72}}{2\left(-1\right)}
Whakareatia 4 ki te 18.
x=\frac{-\left(-8\right)±\sqrt{136}}{2\left(-1\right)}
Tāpiri 64 ki te 72.
x=\frac{-\left(-8\right)±2\sqrt{34}}{2\left(-1\right)}
Tuhia te pūtakerua o te 136.
x=\frac{8±2\sqrt{34}}{2\left(-1\right)}
Ko te tauaro o -8 ko 8.
x=\frac{8±2\sqrt{34}}{-2}
Whakareatia 2 ki te -1.
x=\frac{2\sqrt{34}+8}{-2}
Nā, me whakaoti te whārite x=\frac{8±2\sqrt{34}}{-2} ina he tāpiri te ±. Tāpiri 8 ki te 2\sqrt{34}.
x=-\left(\sqrt{34}+4\right)
Whakawehe 8+2\sqrt{34} ki te -2.
x=\frac{8-2\sqrt{34}}{-2}
Nā, me whakaoti te whārite x=\frac{8±2\sqrt{34}}{-2} ina he tango te ±. Tango 2\sqrt{34} mai i 8.
x=\sqrt{34}-4
Whakawehe 8-2\sqrt{34} ki te -2.
x=-\left(\sqrt{34}+4\right) x=\sqrt{34}-4
Kua oti te whārite te whakatau.
-x^{2}-8x+18=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-x^{2}-8x+18-18=-18
Me tango 18 mai i ngā taha e rua o te whārite.
-x^{2}-8x=-18
Mā te tango i te 18 i a ia ake anō ka toe ko te 0.
\frac{-x^{2}-8x}{-1}=-\frac{18}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\left(-\frac{8}{-1}\right)x=-\frac{18}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}+8x=-\frac{18}{-1}
Whakawehe -8 ki te -1.
x^{2}+8x=18
Whakawehe -18 ki te -1.
x^{2}+8x+4^{2}=18+4^{2}
Whakawehea te 8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 4. Nā, tāpiria te pūrua o te 4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+8x+16=18+16
Pūrua 4.
x^{2}+8x+16=34
Tāpiri 18 ki te 16.
\left(x+4\right)^{2}=34
Tauwehea x^{2}+8x+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{34}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+4=\sqrt{34} x+4=-\sqrt{34}
Whakarūnātia.
x=\sqrt{34}-4 x=-\sqrt{34}-4
Me tango 4 mai i ngā taha e rua o te whārite.