Whakaoti mō x
x=-3
x=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
-x^{2}-2x+3=0
Me tāpiri te 3 ki ngā taha e rua.
a+b=-2 ab=-3=-3
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx+3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=1 b=-3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Ko te takirua anake pērā ko te otinga pūnaha.
\left(-x^{2}+x\right)+\left(-3x+3\right)
Tuhia anō te -x^{2}-2x+3 hei \left(-x^{2}+x\right)+\left(-3x+3\right).
x\left(-x+1\right)+3\left(-x+1\right)
Tauwehea te x i te tuatahi me te 3 i te rōpū tuarua.
\left(-x+1\right)\left(x+3\right)
Whakatauwehea atu te kīanga pātahi -x+1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=1 x=-3
Hei kimi otinga whārite, me whakaoti te -x+1=0 me te x+3=0.
-x^{2}-2x=-3
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
-x^{2}-2x-\left(-3\right)=-3-\left(-3\right)
Me tāpiri 3 ki ngā taha e rua o te whārite.
-x^{2}-2x-\left(-3\right)=0
Mā te tango i te -3 i a ia ake anō ka toe ko te 0.
-x^{2}-2x+3=0
Tango -3 mai i 0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -2 mō b, me 3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)\times 3}}{2\left(-1\right)}
Pūrua -2.
x=\frac{-\left(-2\right)±\sqrt{4+4\times 3}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2\left(-1\right)}
Whakareatia 4 ki te 3.
x=\frac{-\left(-2\right)±\sqrt{16}}{2\left(-1\right)}
Tāpiri 4 ki te 12.
x=\frac{-\left(-2\right)±4}{2\left(-1\right)}
Tuhia te pūtakerua o te 16.
x=\frac{2±4}{2\left(-1\right)}
Ko te tauaro o -2 ko 2.
x=\frac{2±4}{-2}
Whakareatia 2 ki te -1.
x=\frac{6}{-2}
Nā, me whakaoti te whārite x=\frac{2±4}{-2} ina he tāpiri te ±. Tāpiri 2 ki te 4.
x=-3
Whakawehe 6 ki te -2.
x=-\frac{2}{-2}
Nā, me whakaoti te whārite x=\frac{2±4}{-2} ina he tango te ±. Tango 4 mai i 2.
x=1
Whakawehe -2 ki te -2.
x=-3 x=1
Kua oti te whārite te whakatau.
-x^{2}-2x=-3
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}-2x}{-1}=-\frac{3}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\left(-\frac{2}{-1}\right)x=-\frac{3}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}+2x=-\frac{3}{-1}
Whakawehe -2 ki te -1.
x^{2}+2x=3
Whakawehe -3 ki te -1.
x^{2}+2x+1^{2}=3+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=3+1
Pūrua 1.
x^{2}+2x+1=4
Tāpiri 3 ki te 1.
\left(x+1\right)^{2}=4
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=2 x+1=-2
Whakarūnātia.
x=1 x=-3
Me tango 1 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}