Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}=\frac{-9}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}=9
Ka taea te hautanga \frac{-9}{-1} te whakamāmā ki te 9 mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
x=3 x=-3
Tuhia te pūtakerua o ngā taha e rua o te whārite.
-x^{2}+9=0
Me tāpiri te 9 ki ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)\times 9}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 0 mō b, me 9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1\right)\times 9}}{2\left(-1\right)}
Pūrua 0.
x=\frac{0±\sqrt{4\times 9}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{0±\sqrt{36}}{2\left(-1\right)}
Whakareatia 4 ki te 9.
x=\frac{0±6}{2\left(-1\right)}
Tuhia te pūtakerua o te 36.
x=\frac{0±6}{-2}
Whakareatia 2 ki te -1.
x=-3
Nā, me whakaoti te whārite x=\frac{0±6}{-2} ina he tāpiri te ±. Whakawehe 6 ki te -2.
x=3
Nā, me whakaoti te whārite x=\frac{0±6}{-2} ina he tango te ±. Whakawehe -6 ki te -2.
x=-3 x=3
Kua oti te whārite te whakatau.