Whakaoti mō x
x=9
x=36
Graph
Tohaina
Kua tāruatia ki te papatopenga
-x^{2}+45x-200-124=0
Tangohia te 124 mai i ngā taha e rua.
-x^{2}+45x-324=0
Tangohia te 124 i te -200, ka -324.
a+b=45 ab=-\left(-324\right)=324
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx-324. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,324 2,162 3,108 4,81 6,54 9,36 12,27 18,18
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 324.
1+324=325 2+162=164 3+108=111 4+81=85 6+54=60 9+36=45 12+27=39 18+18=36
Tātaihia te tapeke mō ia takirua.
a=36 b=9
Ko te otinga te takirua ka hoatu i te tapeke 45.
\left(-x^{2}+36x\right)+\left(9x-324\right)
Tuhia anō te -x^{2}+45x-324 hei \left(-x^{2}+36x\right)+\left(9x-324\right).
-x\left(x-36\right)+9\left(x-36\right)
Tauwehea te -x i te tuatahi me te 9 i te rōpū tuarua.
\left(x-36\right)\left(-x+9\right)
Whakatauwehea atu te kīanga pātahi x-36 mā te whakamahi i te āhuatanga tātai tohatoha.
x=36 x=9
Hei kimi otinga whārite, me whakaoti te x-36=0 me te -x+9=0.
-x^{2}+45x-200=124
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
-x^{2}+45x-200-124=124-124
Me tango 124 mai i ngā taha e rua o te whārite.
-x^{2}+45x-200-124=0
Mā te tango i te 124 i a ia ake anō ka toe ko te 0.
-x^{2}+45x-324=0
Tango 124 mai i -200.
x=\frac{-45±\sqrt{45^{2}-4\left(-1\right)\left(-324\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 45 mō b, me -324 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-45±\sqrt{2025-4\left(-1\right)\left(-324\right)}}{2\left(-1\right)}
Pūrua 45.
x=\frac{-45±\sqrt{2025+4\left(-324\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-45±\sqrt{2025-1296}}{2\left(-1\right)}
Whakareatia 4 ki te -324.
x=\frac{-45±\sqrt{729}}{2\left(-1\right)}
Tāpiri 2025 ki te -1296.
x=\frac{-45±27}{2\left(-1\right)}
Tuhia te pūtakerua o te 729.
x=\frac{-45±27}{-2}
Whakareatia 2 ki te -1.
x=-\frac{18}{-2}
Nā, me whakaoti te whārite x=\frac{-45±27}{-2} ina he tāpiri te ±. Tāpiri -45 ki te 27.
x=9
Whakawehe -18 ki te -2.
x=-\frac{72}{-2}
Nā, me whakaoti te whārite x=\frac{-45±27}{-2} ina he tango te ±. Tango 27 mai i -45.
x=36
Whakawehe -72 ki te -2.
x=9 x=36
Kua oti te whārite te whakatau.
-x^{2}+45x-200=124
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-x^{2}+45x-200-\left(-200\right)=124-\left(-200\right)
Me tāpiri 200 ki ngā taha e rua o te whārite.
-x^{2}+45x=124-\left(-200\right)
Mā te tango i te -200 i a ia ake anō ka toe ko te 0.
-x^{2}+45x=324
Tango -200 mai i 124.
\frac{-x^{2}+45x}{-1}=\frac{324}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{45}{-1}x=\frac{324}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-45x=\frac{324}{-1}
Whakawehe 45 ki te -1.
x^{2}-45x=-324
Whakawehe 324 ki te -1.
x^{2}-45x+\left(-\frac{45}{2}\right)^{2}=-324+\left(-\frac{45}{2}\right)^{2}
Whakawehea te -45, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{45}{2}. Nā, tāpiria te pūrua o te -\frac{45}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-45x+\frac{2025}{4}=-324+\frac{2025}{4}
Pūruatia -\frac{45}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-45x+\frac{2025}{4}=\frac{729}{4}
Tāpiri -324 ki te \frac{2025}{4}.
\left(x-\frac{45}{2}\right)^{2}=\frac{729}{4}
Tauwehea x^{2}-45x+\frac{2025}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{45}{2}\right)^{2}}=\sqrt{\frac{729}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{45}{2}=\frac{27}{2} x-\frac{45}{2}=-\frac{27}{2}
Whakarūnātia.
x=36 x=9
Me tāpiri \frac{45}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}