Whakaoti mō x (complex solution)
x=-2\sqrt{14}i+5\approx 5-7.483314774i
x=5+2\sqrt{14}i\approx 5+7.483314774i
Graph
Tohaina
Kua tāruatia ki te papatopenga
-x^{2}+10x-81=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-10±\sqrt{10^{2}-4\left(-1\right)\left(-81\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 10 mō b, me -81 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\left(-1\right)\left(-81\right)}}{2\left(-1\right)}
Pūrua 10.
x=\frac{-10±\sqrt{100+4\left(-81\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-10±\sqrt{100-324}}{2\left(-1\right)}
Whakareatia 4 ki te -81.
x=\frac{-10±\sqrt{-224}}{2\left(-1\right)}
Tāpiri 100 ki te -324.
x=\frac{-10±4\sqrt{14}i}{2\left(-1\right)}
Tuhia te pūtakerua o te -224.
x=\frac{-10±4\sqrt{14}i}{-2}
Whakareatia 2 ki te -1.
x=\frac{-10+4\sqrt{14}i}{-2}
Nā, me whakaoti te whārite x=\frac{-10±4\sqrt{14}i}{-2} ina he tāpiri te ±. Tāpiri -10 ki te 4i\sqrt{14}.
x=-2\sqrt{14}i+5
Whakawehe -10+4i\sqrt{14} ki te -2.
x=\frac{-4\sqrt{14}i-10}{-2}
Nā, me whakaoti te whārite x=\frac{-10±4\sqrt{14}i}{-2} ina he tango te ±. Tango 4i\sqrt{14} mai i -10.
x=5+2\sqrt{14}i
Whakawehe -10-4i\sqrt{14} ki te -2.
x=-2\sqrt{14}i+5 x=5+2\sqrt{14}i
Kua oti te whārite te whakatau.
-x^{2}+10x-81=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-x^{2}+10x-81-\left(-81\right)=-\left(-81\right)
Me tāpiri 81 ki ngā taha e rua o te whārite.
-x^{2}+10x=-\left(-81\right)
Mā te tango i te -81 i a ia ake anō ka toe ko te 0.
-x^{2}+10x=81
Tango -81 mai i 0.
\frac{-x^{2}+10x}{-1}=\frac{81}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{10}{-1}x=\frac{81}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-10x=\frac{81}{-1}
Whakawehe 10 ki te -1.
x^{2}-10x=-81
Whakawehe 81 ki te -1.
x^{2}-10x+\left(-5\right)^{2}=-81+\left(-5\right)^{2}
Whakawehea te -10, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -5. Nā, tāpiria te pūrua o te -5 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-10x+25=-81+25
Pūrua -5.
x^{2}-10x+25=-56
Tāpiri -81 ki te 25.
\left(x-5\right)^{2}=-56
Tauwehea x^{2}-10x+25. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{-56}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-5=2\sqrt{14}i x-5=-2\sqrt{14}i
Whakarūnātia.
x=5+2\sqrt{14}i x=-2\sqrt{14}i+5
Me tāpiri 5 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}