Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-\left(x^{2}+6x+9\right)-4\left(3x+1\right)=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+3\right)^{2}.
-x^{2}-6x-9-4\left(3x+1\right)=0
Hei kimi i te tauaro o x^{2}+6x+9, kimihia te tauaro o ia taurangi.
-x^{2}-6x-9-12x-4=0
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te 3x+1.
-x^{2}-18x-9-4=0
Pahekotia te -6x me -12x, ka -18x.
-x^{2}-18x-13=0
Tangohia te 4 i te -9, ka -13.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\left(-1\right)\left(-13\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -18 mō b, me -13 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±\sqrt{324-4\left(-1\right)\left(-13\right)}}{2\left(-1\right)}
Pūrua -18.
x=\frac{-\left(-18\right)±\sqrt{324+4\left(-13\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-\left(-18\right)±\sqrt{324-52}}{2\left(-1\right)}
Whakareatia 4 ki te -13.
x=\frac{-\left(-18\right)±\sqrt{272}}{2\left(-1\right)}
Tāpiri 324 ki te -52.
x=\frac{-\left(-18\right)±4\sqrt{17}}{2\left(-1\right)}
Tuhia te pūtakerua o te 272.
x=\frac{18±4\sqrt{17}}{2\left(-1\right)}
Ko te tauaro o -18 ko 18.
x=\frac{18±4\sqrt{17}}{-2}
Whakareatia 2 ki te -1.
x=\frac{4\sqrt{17}+18}{-2}
Nā, me whakaoti te whārite x=\frac{18±4\sqrt{17}}{-2} ina he tāpiri te ±. Tāpiri 18 ki te 4\sqrt{17}.
x=-2\sqrt{17}-9
Whakawehe 18+4\sqrt{17} ki te -2.
x=\frac{18-4\sqrt{17}}{-2}
Nā, me whakaoti te whārite x=\frac{18±4\sqrt{17}}{-2} ina he tango te ±. Tango 4\sqrt{17} mai i 18.
x=2\sqrt{17}-9
Whakawehe 18-4\sqrt{17} ki te -2.
x=-2\sqrt{17}-9 x=2\sqrt{17}-9
Kua oti te whārite te whakatau.
-\left(x^{2}+6x+9\right)-4\left(3x+1\right)=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+3\right)^{2}.
-x^{2}-6x-9-4\left(3x+1\right)=0
Hei kimi i te tauaro o x^{2}+6x+9, kimihia te tauaro o ia taurangi.
-x^{2}-6x-9-12x-4=0
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te 3x+1.
-x^{2}-18x-9-4=0
Pahekotia te -6x me -12x, ka -18x.
-x^{2}-18x-13=0
Tangohia te 4 i te -9, ka -13.
-x^{2}-18x=13
Me tāpiri te 13 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{-x^{2}-18x}{-1}=\frac{13}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\left(-\frac{18}{-1}\right)x=\frac{13}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}+18x=\frac{13}{-1}
Whakawehe -18 ki te -1.
x^{2}+18x=-13
Whakawehe 13 ki te -1.
x^{2}+18x+9^{2}=-13+9^{2}
Whakawehea te 18, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 9. Nā, tāpiria te pūrua o te 9 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+18x+81=-13+81
Pūrua 9.
x^{2}+18x+81=68
Tāpiri -13 ki te 81.
\left(x+9\right)^{2}=68
Tauwehea x^{2}+18x+81. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+9\right)^{2}}=\sqrt{68}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+9=2\sqrt{17} x+9=-2\sqrt{17}
Whakarūnātia.
x=2\sqrt{17}-9 x=-2\sqrt{17}-9
Me tango 9 mai i ngā taha e rua o te whārite.